On strongly convergent parallel proximal point algorithms

Pham Ky Anh*, Cao Van Chung
Faculty of Mathematics, Mechunics and Informatics
VNU University of Science, $33+$ Ngoyen Trai, Hanoi, Vietnam

Received 30 March 2011

Abstract

This paper is concerned with two parallel proximal point algorithms for solving a system of ill-posed equations involving monotone operators. They are parallel versions of the projection-proximal point method proposed by Solodov and Svaiter and the regularizationproximal point method introduced by Ryazantseva, respectively. The convergence analysis of both methods has been investigated. The paper is completed by some numerical experiments. Keywork:monotone operator, proximal point method, iterative regularization method, parallel computation.

2000 Mathematics Subject Classifications: 47HI7, 47J06, 47J25, 65J15, 65J20, 65 Y 05.

1. Introduction

Various problems of science and engineering, such as the convex feasibility problems with applications in optimization theory, image processing, radiation therapy treatment planning, etc... (see [1]), or parameter identification problems with multi-sources [2], can be reduced to finding a solution of a simultaneous system of possibly nonlinear operator equations.

For solving a maximal monotone operator inclusion, Rockafellar [3] proposed the proximal point algorithm, which is in general only weakly convergent [4]. Solodov and Svaiter [5] combined the proximal point algorithm with a simple projection step onto intersection of appropriately constructed halfspaces to get the strong convergence. Later on, Ryazantseva $[6,7]$ proposed a strongly convergent algorithm combining the proximal point method and Lavrentiev regularization technique.

The aim of this article is to apply the projection-proximal point and the regularization-proximal point algorithms in a parallel way to the following consistent system of operator equations:

$$
\begin{equation*}
A_{i}(x)=0, \quad i=\overline{1, N} \tag{1}
\end{equation*}
$$

where H is a real Hilbert space and $A_{i}: H \rightarrow H$ are continuous monotone operators, i.e.,

$$
\left\langle A_{i}(x)-A_{i}(y), x-y\right\rangle \geq 0, \quad \forall x, y \in H
$$

The rest of the paper is organized as follows. In Section 2 we study a parallel version of the projectionproximal point algorithm, which beconiss the Solodov - Svaiter's method if the number of equations $N=1$. Section 3 deals with a parallel regularization-preximal point method, which can be regarded as a parallel implicit iterative regularization method considered in $[8,9]$. The convergence of the method

[^0]is investigated in the noisy data case. Finally, in Section 4, two parallel algorithms are tested by some model problems.

2. Parallel projection-proximal point method

We begin this section by recalling some notations and results in [5].
Theorem 2.1. Let C be any nonempty closed convex set in H, for $x, y \in H$ and $z \in C$. Then the orthogonal projector P_{C} from H onto C satisfies the following relations.

$$
\begin{gather*}
<x-P_{C}(x), z-P_{C}(x)>\leq 0 \tag{2}\\
\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leq\|x-y\|^{2}-\left\|\left(P_{C}(x)-x\right)-\left(P_{C}(y)-y\right)\right\|^{2} \tag{3}
\end{gather*}
$$

Lemma 2.2. Let $A: H \rightarrow H$ be a monotone operator, $x \in H, \mu>0, \sigma \in[0,1)$ and suppose that $y \in H$ satisfies

$$
A(y)+\mu(y-x)+e=0, \quad \text { where } \quad\|e\| \leq \sigma \max \{\|A(y)\|, \mu\|x-y\|\}
$$

Then we have

$$
<x-y, A(y)>\geq \sigma \max \left\{\mu\|x-y\|^{2},\|A(y)\|^{2} / \mu\right\} \geq(1-\sigma)\|A(y)\|\|x-y\|
$$

Define a half-space $H_{y}=\{z \in H \mid<z-y, A(y)>\leq 0\}$, then the following four statements are equivalent:

$$
\text { (i) } \quad x \in H_{y} ; \quad \text { (ii) } \quad y=x ; \quad \text { (iii) } \quad A(y)=0 ; \quad \text { (iv) } \quad A(x)=0
$$

Furthermore,

$$
\begin{equation*}
\left\|P_{H_{y}}(x)-x\right\| \geq(1-\sigma) \max \{\|x-y\|,\|A(y)\| / \mu\} \tag{4}
\end{equation*}
$$

For solving system (1) with a nonempty solution set

$$
S=\left\{z \in H \mid \quad A_{i}(z)=0, \quad i=\overline{1, N}\right\} \neq \emptyset
$$

and A_{i} are continuous monotone operators, we implement the following parallel algorithm on a computing cluster with N processors.

Algorithm 2.1. Let $x_{0} \in H$ be an arbitrary initial point, $\bar{\mu}>0$ and $\sigma \in[0,1)$.

- At iteration $k \geq 0$, having x_{k}, we compute (in parallel) solutions $y_{k}^{i} \in H$ of equations

$$
\begin{equation*}
A_{i}\left(y_{k}^{i}\right)+\mu_{k}^{i}\left(y_{k}^{i}-x_{k}\right)+e_{k}^{i}=0, \quad i=\overline{1, N} \tag{5}
\end{equation*}
$$

where $\mu_{k}^{i} \in(0, \bar{\mu}),\left\|e_{k}^{i}\right\| \leq \sigma \max \left\{\left\|A_{i}\left(y_{k}^{i}\right)\right\|, \mu_{k}^{i}\left\|x_{k}-y_{k}^{i}\right\|\right\}$.

- Define (in parallel) projections from x_{k} onto half-spaces

$$
H_{k}^{i}=\left\{z \in H \mid<z-y_{k}^{i}, A_{i}\left(y_{k}^{i}\right)>\leq 0\right\}
$$

and find an optimal index $j_{k}\left(1 \leq j_{k} \leq N\right)$, such that

$$
\left\|x_{k}-P_{H_{k}^{j_{k}}}\left(x_{k}\right)\right\|=\max _{i=\overline{1, N}}\left\{\left\|x_{k}-P_{H_{k}^{i}}\left(x_{k}\right)\right\|\right\}
$$

- Compute

$$
\begin{equation*}
x_{k+1}=P_{H_{k}^{j_{k} \cap W_{k}}}\left(x_{0}\right), \tag{6}
\end{equation*}
$$

where $W_{k}=\left\{z \in H \mid<z-x_{k}, x_{0}-x_{k}>\leq 0\right\}$.
If $x_{k+1}=x_{k}$ then stop. Else, set $k:=k+1$ and repeat.
Since A_{i} is monotone and $\mu_{k}^{i}>0$, each subproblem (5) is well-posed, hence it has a unique solution y_{k}^{i}. At each iteration k, if $x_{k} \in H_{k}^{i}$ then $P_{H_{k}^{i}}\left(x_{k}\right)=x_{k}$ and $\left\|x_{k}-P_{H_{k}^{i}}\left(x_{k}\right)\right\|=0$. Otherwise, we have

$$
P_{H_{k}^{i}}\left(x_{k}\right)=x_{k}-\frac{<A_{i}\left(y_{k}^{i}\right), x_{k}-y_{k}^{i}>}{\left\|A_{i}\left(y_{k}^{i}\right)\right\|^{2}} A_{i}\left(y_{k}^{i}\right) \quad \text { and } \quad\left\|x_{k}-P_{H_{k}^{i}}\left(x_{k}\right)\right\|=\frac{\left|<A_{i}\left(y_{k}^{i}\right), x_{k}-y_{k}^{i}>\right|}{\left\|A_{i}\left(y_{k}^{i}\right)\right\|} .
$$

Clearly, the computation of the optimal index j_{k} at iteration k of Algorithm does not require much additional cost.
The convergence of Algorithm can be established by the technique introduced in $[5]$.
Lemma 2.3. If the Algorithm terminates at a finite iteration $k+1$, then x_{k} is a solution of system (1).

Proof. If the Algorithm terminates at a finite iteration $k+1$, then we have $x_{k+1}=P_{H_{k}^{j_{k} \cap W_{k}}}\left(x_{0}\right) \equiv$ x_{k}. It follows $x_{k} \in H_{k}^{j_{k}}$ and therefore $\left\|x_{k}-P_{H_{k}^{j_{k}}}\left(x_{k}\right)\right\|=0$. By the definition of j_{k}, we have $\left\|x_{k}-P_{I_{k}^{i}}\left(x_{k}\right)\right\|=0$ for all $i=\overline{1, N}$. Now applying Lemma 2.2 to each equation $A_{i}\left(y_{k}^{i}\right)+\mu_{k}^{i}\left(y_{k}^{i}-\right.$ $\left.x_{k}\right)+e_{k}^{i}=0$ with respect to $x=x_{k}, y=y_{k}^{i}$, we have

$$
\left\|P_{H_{k}^{i}}\left(x_{k}\right)-x_{k}\right\| \geq(1-\sigma) \max \left\{\left\|x_{k}-y_{k}^{i}\right\|,\left\|A_{i}\left(y_{k}^{i}\right)\right\| / \mu_{k}^{i}\right\} \quad \text { for all } \quad i=\overline{1, N}
$$

Hence, $A_{i}\left(y_{k}^{i}\right)=0$ and $y_{k}^{i} \equiv x_{k}$ for all $i=\overline{1, N}$, or x_{k} is a solution of system (1).
In what follows, assuming that Algorithm generates an infinite sequence x_{k}, we will show that knowing the k-th iterate x_{k} we can define the next one x_{k+1}. For a chosen initial iterate $x_{0} \in H$ we define the set

$$
U\left(x_{0}\right)=\left\{x \in H \mid \quad \forall z \in S, \quad<z-x, x_{0}-x>\leq 0\right\} .
$$

Clearly, $x_{0} \in U\left(x_{0}\right)$.
Lemma 2.4. Suppose that at iteration k-th of algorithm we have $x_{k} \in U\left(x_{0}\right)$, then
i. $S \subset\left(\cap_{i=1}^{N} H_{k}^{i}\right) \cap W_{k} \subset H_{k}^{j_{k}} \cap W_{k}$.
ii. x_{k+1} from (6) is well-defined and $x_{k+1} \in U\left(x_{0}\right)$.
iii. $\left\|x_{k+1}-x_{0}\right\| \leq\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|$ for all $k \in \mathbb{N}$, and therefore $\left\{x_{k}\right\}$ is bounded.

Proof. From the monotonicity of A_{i}, for any $z \in S$ we have

$$
<A_{i}\left(y_{k}^{i}\right), z-y_{n}^{i}>=-<A_{i}\left(y_{k}^{i}\right)-A_{i}(z), y_{n}^{i}-z>\leq 0, \quad i=\overline{1, N}
$$

Then $z \in\left(\cap_{i=1}^{N} H_{k}^{i}\right)$, and hence $S \subset\left(\cap_{i=1}^{N} H_{k}^{i}\right)$. Since $x_{k} \in U\left(x_{0}\right)$, it follows $<z-x_{k}, x_{0}-x_{k}>\leq 0$ for all $z \in S$. Therefore, $z \in W_{k}$ and $S \subset W_{k}$. Thus, $S \subset\left(\cap_{i=1}^{N} H_{k}^{i}\right) \cap W_{k} \subset H_{k}^{j_{k}} \cap W_{k}$, and the assumption $S \neq \emptyset$ implies that $H_{k}^{j_{k}} \cap W_{k} \neq \emptyset$. Hence $x_{k+1}=P_{H_{k}^{j_{k}} \cap W_{k}}\left(x_{0}\right)$ is well-defined.
Since x_{k+1} is the projection of x_{0} onto $H_{k}^{j_{k}} \cap W_{k}$, from (2) we have $<z-x_{k+1}, x_{0}-x_{k+1}>\leq 0$ for all $z \in H_{k}^{j_{k}} \cap W_{k}$. The inclusion $S \subset H_{k}^{j_{k}} \cap W_{k}$ and the last inequality ensure that $<z-x_{k+1}, x_{0}-$ $x_{k+1}>\leq 0$ for all $z \in S$, therefore $x_{k+1} \in U\left(x_{0}\right)$.
From (6), we also have $\left\|x_{k+1}-x_{0}\right\| \leq\left\|z-x_{0}\right\|$ for all $z \in H_{k}^{j_{k}} \cap W_{k}$. Taking into account the
inclusion $S \subset H_{k}^{j_{k}} \cap W_{k}, \forall z \in S$, we have $\left\|x_{k+1}-x_{0}\right\| \leq\left\|z-x_{0}\right\|$, i.e., $\left\|x_{k+1}-x_{0}\right\| \leq\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|$, which implies the boundedness of the sequence $\left\{x_{k}\right\}$.

By Lemma 2.4, starting from $x_{0} \in U\left(x_{0}\right)$, we have $x_{k} \in U\left(x_{0}\right)$ for $k=0,1,2, \ldots$
Lemma 2.5. Suppose the Algorithm reaches an iteration $k+1$, then we have

$$
\begin{align*}
\left\|x_{k+1}-x_{0}\right\|^{2} & \geq\left\|x_{k}-x_{0}\right\|^{2}+\left\|x_{k+1}-x_{k}\right\|^{2} \tag{7}\\
\left\|x_{k+1}-x_{k}\right\| & \geq(1-\sigma) \max _{i=1, N}\left\{\left\|y_{k}^{i}-x_{k}\right\|,\left\|A_{i}\left(y_{k}^{i}\right)\right\| / \mu_{k}^{i}\right\} \tag{8}
\end{align*}
$$

Proof. From the definition of W_{k}, it follows that $x_{k}=P_{W_{k}}\left(x_{0}\right)$. Applying (3) with respect to $C=W_{k}, x=x_{k+1}$ and $y=x_{0}$, we have

$$
\left\|P_{W_{k}}\left(x_{k+1}\right)-P_{W_{k}}\left(x_{0}\right)\right\|^{2} \leq\left\|x_{k+1}-x_{0}\right\|^{2}-\left\|x_{k+1}-P_{W_{k}}\left(x_{k+1}\right)-\left(x_{0}-P_{W_{k}}\left(x_{0}\right)\right)\right\|^{2} .
$$

Now observing that $P_{W_{k}}\left(x_{k+1}\right)=x_{k+1}$, since $x_{k+1} \in W_{k}$, and $P_{W_{k}}\left(x_{0}\right)=x_{k}$, we get (7). On the other-hand, since $x_{k+1} \in H_{k}^{j_{k}}$, it follows

$$
\begin{equation*}
\left\|x_{k}-x_{k+1}\right\| \geq\left\|x_{k}-P_{H_{k}^{j_{k}}}\left(x_{k}\right)\right\| \geq \max _{i=1, N}\left\|x_{k}-P_{H_{k}^{i}}\left(x_{k}\right)\right\| \tag{9}
\end{equation*}
$$

Using the last inequality and applying (4) with respect to $H_{y}:=H_{k}^{i}, A:=A_{i}, x:=x_{0}, \mu:=\mu_{k}^{i}$ and $y:=y_{k}^{i}$, we have $\left\|x_{k}-P_{H_{k}^{i}}\left(x_{k}\right)\right\| \geq(1-\sigma) \max \left\{\left\|y_{k}^{i}-x_{k}\right\|,\left\|A_{i}\left(y_{k}^{i}\right)\right\| / \mu_{k}^{i}\right\}$. Finally, from the last relation and (9) we come to the estimate (8).

Theorem 2.1. Let $\left\{x_{k}\right\}$ be the infinite sequence generated by Algorithm, then

$$
\lim _{k \rightarrow \infty} x_{k}=P_{S}\left(x_{0}\right)
$$

Proof. Using (7) consecutively, we have

$$
\begin{equation*}
\left\|x_{k+1}-x_{0}\right\|^{2} \geq\left\|x_{k}-x_{0}\right\|^{2}+\left\|x_{k+1}-x_{k}\right\|^{2} \geq \sum_{l=0}^{k-1}\left\|x_{l+1}-x_{l}\right\|^{2} \tag{10}
\end{equation*}
$$

From item (iii) of Lemma 2.4 and (10), we have $\sum_{l=0}^{\infty}\left\|x_{l+1}-x_{l}\right\|^{2} \leq\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2}<\infty$, therefore $\lim _{k \rightarrow \infty}\left\|x_{k+1}-x_{k}\right\|=0$. Using (8) and taking into account that $\mu_{k}^{i} \leq \bar{\mu}$, we also have $\lim _{k \rightarrow \infty} \| y_{k}^{i}-$ $x_{k} \|=0$, and $\lim _{k \rightarrow \infty}\left\|A_{i}\left(y_{k}^{i}\right)\right\|=0$, for all $i=1,2, \ldots, N$.
Since $\left\{x_{k}\right\}$ is bounded, it is relatively weakly compact. Let $\left\{x_{k_{m}}\right\}$ be an arbitrary weakly convergent subsequence of the bounded sequence $\left\{x_{k}\right\}$ and $x_{k_{m}} \rightharpoonup \tilde{x}$ as $m \rightarrow \infty$. Clearly, $y_{k_{m}}^{i} \rightharpoonup \tilde{x}$ as $m \rightarrow \infty$. By the monotonicity of A_{i}, for each $i=1,2, \ldots, N$ and any $z \in H$, we have

$$
0 \leq<z-y_{k_{m}}^{i}, A_{i}(z)-A_{i}\left(y_{k_{m}}^{i}\right)>=<z-y_{k_{m}}^{i}, A_{i}(z)>-<z-y_{k_{m}}^{i}, A_{i}\left(y_{k_{m}}^{i}\right)>
$$

Passing to the limit as $m \rightarrow \infty$ and taking into account $y_{k_{m}}^{i} \rightharpoonup \tilde{x}$ and $A_{i}\left(y_{k_{m}}^{i}\right) \rightarrow 0$, we find

$$
<z-\tilde{x}, A_{i}(z)>\geq 0 \quad \forall z \in H, \quad i=1,2, \ldots, N
$$

Now from the maximal monotonicity of A_{i} it follows $A_{i}(\tilde{x})=0($ see $[7]), i=\overline{1, N}$, i.e., $\tilde{x} \in S$.
Using the relation $\left\|x_{k}-x_{0}\right\| \leq\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|$ for all k, we get

$$
\begin{aligned}
\left\|x_{k_{m}}-P_{S}\left(x_{0}\right)\right\|^{2} & =\left\|x_{k_{m}}-x_{0}-\left(P_{S}\left(x_{0}\right)-x_{0}\right)\right\|^{2} \\
& =\left\|x_{k_{m}}-x_{0}\right\|^{2}+\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2}-2<x_{k_{m}}-x_{0}, P_{S}\left(x_{0}\right)-x_{0}> \\
& \leq 2\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2}-2<x_{k_{m}}-x_{0}, P_{S}\left(x_{0}\right)-x_{0}>.
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \sup \left\|x_{k_{m}}-P_{S}\left(x_{0}\right)\right\|^{2} \leq 2\left(\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2}-<\bar{x}-x_{0}, P_{S}\left(x_{0}\right)-x_{0}>\right) \tag{11}
\end{equation*}
$$

Applying (2) with respect to $C:=S, x=x_{0}$ and $z:=\tilde{x} \in S$, we have

$$
<x_{0}-P_{S}\left(x_{0}\right), \tilde{x}-P_{S}\left(x_{0}\right)>=\left\|x_{0}-P_{S}\left(x_{0}\right)\right\|^{2}-<\tilde{x}-x_{0}, P_{S}\left(x_{0}\right)-x_{0}>\leq 0
$$

Combining the last inequality with (11), we find $\lim _{k_{m} \rightarrow \infty}\left\|x_{k_{m}}-P_{S}\left(x_{0}\right)\right\|=0$ or $x_{k_{m}} \rightarrow P_{S}\left(x_{0}\right)$ as $m \rightarrow \infty$. Moreover, we also have $\bar{x} \equiv P_{S}\left(x_{0}\right)$. Thus, $P_{S}\left(x_{0}\right)$ is the unique weak accumulation point of $\left\{x_{k}\right\}$. Clearly, every weakly convergent subsequence of $\left\{x_{k}\right\}$ strongly converges to $P_{S}\left(x_{0}\right)$, thiarefore $x_{k} \rightarrow P_{S}\left(x_{0}\right)$ as $k \rightarrow \infty$.

3. Parallel regularization-proximal point method

In this section we consider system (1) with $A_{i}(x):=F_{i}(x)-f_{i}$, where $F_{i}: H \rightarrow H,(i=\overline{1, N})$ are supposed to be c^{-1}-inverse-strongly monotone operator (see [10]), i.e.,

$$
<F_{i}(x)-F_{i}(y), x-y>\geq c^{-1}\left\|F_{i}(x)-F_{i}(y)\right\|^{2}, \quad \forall x, y \in H, \quad c>0
$$

We assume as in Section 2 that the solution set $S \subset H$ of (1) is not empty, hence S is convex and closed. Furthermore, suppose that $0 \notin S$.
Let $F(x)=\sum_{i=1}^{N} F_{i}(x), f=\sum_{i=1}^{N} f_{i}$ and $A(x):=F(x)-f$ for all $x \in H$. Suppose that instead of exact data $\left\{F_{i}, f_{i}\right\}$, we are given only noisy ones $\left\{F_{n, i}, f_{n, i}\right\}$, such that

$$
\left\|F_{n, i}(x)-F_{i}(x)\right\| \leq h_{n} g(\|x\|), \quad \forall x \in H, \quad\left\|f_{n, i}-f_{i}\right\| \leq \delta_{n}, \quad n=1,2, \ldots
$$

where $\delta_{n}>0, h_{n}>0$ are noise levels and $g: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a positive nondecreasing function.
We put $A_{n, i}(x):=F_{n, i}(x)-f_{n, i}, A_{n}(x)=\sum_{i=1}^{N} A_{n, i}(x)$ and suppose that the operators $F_{n, i}$: $H \rightarrow H$ are continuous and monotone. Combining the parallel splitting up technique [11] with the regularization-proximal point method [6] for the equation $A_{n}(x)=0$, we come to the following parallel regularization proximal point (PRPXP) method

$$
\begin{align*}
A_{n, i}\left(z_{n}^{i}\right)+\left(\frac{\alpha_{n}}{N}+\frac{1}{c_{n}}+\tilde{\gamma_{n}}\right) z_{n}^{i} & =\left(\frac{1}{c_{n}}+\tilde{\gamma_{n}}\right) z_{n}, & & i=1,2, \ldots, N \tag{12}\\
z_{n+1} & =\frac{1}{N} \sum_{i=1}^{N} z_{n}^{i}, & n & =0,1,2, \ldots, \tag{13}
\end{align*}
$$

Clearly, the main computational task (12) can be performed simultaneously by N parallel processors. With notation $\gamma_{n}:=\frac{1}{c_{n}}+\tilde{\gamma_{n}}$, the PRPXP method (12)-(13) becomes a parallel implicit iterative regularization method (PIIRM) proposed in [8], whose convergence has been studied in the
noise-free case only.
Denoting $\gamma_{n}:=\tilde{\gamma}_{n}+\frac{1}{c_{n}}$, where $\tilde{\gamma}_{n}$ and c_{n} are mentioned in (12)-(13), and x^{\dagger} the minimal - norm solution of the system $A_{i}(x)=F_{i}(x)-f_{i}=0(i=\overline{1, N})$, we have following convergence result.

Theorem 3.1. Let α_{n} and γ_{n} be two sequences of positive numbers, such that $\alpha_{n} \searrow 0, \gamma_{n} \nearrow+\infty$ as $n \rightarrow+\infty$ and suppose that the following conditions are satisfied for all $n \in \mathbb{N}$ and some constant $m_{1}>0$

$$
\frac{\gamma_{n}\left(\alpha_{n}-\alpha_{n+1}\right)}{\alpha_{n}^{3}} \leq \frac{m_{1} \gamma_{0}}{\alpha_{0}^{2}} ; \quad \gamma_{n} \alpha_{n}^{2} \geq \gamma_{0} \alpha_{0}^{2} ; \quad \frac{h_{n} g\left(\left\|x^{\dagger}\right\|\right)+\delta_{n}}{h_{0} g\left(\left\|x^{\dagger}\right\|\right)+\delta_{0}} \leq \frac{\sqrt{\alpha_{n}}}{\gamma_{n}} .
$$

Further, we assume that $\left(1-4 m_{1}+m_{1}^{2}\right) \alpha_{0}>4 m_{1} N \gamma_{0}, \alpha_{0} \gamma_{0} \geq N$ and $\left\|x^{\dagger}\right\|^{2} \leq l \alpha_{0}^{2}$, where

$$
\begin{aligned}
l:=\frac{2\left(2 N \gamma_{0}+\alpha_{0}\right)}{\gamma_{0}\left[\left(1-4 m_{1}+c_{1}^{2}\right) \alpha_{0}-4 m_{1} N \gamma_{0} \mid\right.}\left\{\left[\frac{2 c}{\gamma_{0} \alpha_{0}}+\frac{1}{N^{2} \gamma_{0}}\right.\right. & \left.+\frac{c_{1} \gamma_{0}\left(N \gamma_{0}+\alpha_{0}\right)}{\alpha_{0}^{3}}\right]\left\|x^{\dagger}\right\|^{2} \\
& \left.+\frac{\left(h_{0} g\left(\left\|x^{\dagger}\right\|\right)+\delta_{0}\right)^{2}}{2 \gamma_{0} \alpha_{0}}\right\} .
\end{aligned}
$$

Then starting from $z_{0}=0$, the sequence z_{n} converges to x^{\dagger}.
Although the proof of this theorem is complicated, it follows the same line as the proof of Theorem 2.1 in [8], therefore it will be omited.
Remark 3.1. The sequences $\alpha_{n}=\alpha_{0}(1+n)^{-p} ; \gamma_{n}=\gamma_{0}(1+n)^{1 / 2}$, where $0<p \leq \frac{1}{4}$ and the constants $c_{1}=\frac{1}{4}, \gamma_{0}=\frac{N}{\alpha_{0}}$ and $\alpha_{0}>4 N$ satisfy all the requirements in Theorem 3.1.

Remark 3.2. If the operators $F_{i}(x)$ are free of noise, i.e., $h_{n} \equiv 0$ and the noise levels δ_{n} do not satisfy a-priori conditions in Theorem 3.1, then method (12)-(13) may not converge to the minimal norm solution x^{\dagger} of (1). However, we can choose an appropriate stopping number of iterates $n=n_{\delta}$ such that the sequence $z_{n_{\delta}}$ still gives stable approximations for x^{\dagger}. Moreover, $z_{n_{\delta}} \rightarrow x^{\dagger}$ as $\delta \rightarrow 0$. This problem will not be discussed here due to lack of space.

4. Numerical experiments

To test the described above parallel proximal point methods we consider the system of linear first kind Fredholm integral equations given in [8]:

$$
\begin{equation*}
\left(A_{i} x\right)(t):=\int_{a}^{b} K_{i}(t, s) x(s) d s-f_{i}(t)=0 \quad i=1,2, \ldots, N, \tag{14}
\end{equation*}
$$

where $N=4 ;[a, b] \equiv[0,1]$ and the kernels $K_{1}(t, s)=\frac{t s}{3} ; K_{2}(t, s)=\frac{1}{3}+\frac{t+s}{2}+t s ;$

$$
K_{3}(t, s)=\left\{\begin{array}{ll}
s(1-t) & s \leq t ; \\
t(1-s) & t \leq s
\end{array} \quad ; \quad K_{4}(t, s)= \begin{cases}\frac{(t-s)^{3}}{3}-\frac{t+s}{2}+t s+\frac{1}{3} & s \leq t \\
\frac{(s-t)^{3}}{3}-\frac{t+s}{2}+t s+\frac{1}{3} & t \leq s\end{cases}\right.
$$

It was shown in [8] that $A_{i}, i=1,2, \ldots, N$ are inverse-strongly monotone operators. In particular, A_{i} are Lipschitz continuous, i.e., $\left\|A_{i}(x)-A_{i}(y)\right\| \leq L\|x-y\|$ for all $x, y \in H$, with $L \geq \max _{i=\overline{1, N}}\left\{\left(\int_{0}^{1} \int_{0}^{1} K_{i}^{2}(t, s) d s\right)^{1 / 2}\right\}$. For an arbitrary fixed constant $q \in(0,1)$, we choose μ_{k}^{i} such that $0<\underline{\mu} \leq \mu_{k}^{i} \leq \bar{\mu}$, where $\underline{\mu}$ satisfies $L / \underline{\mu} \leq q<1$.

The integrals in the left-hand sides of (14) are discretized by the rectangle rule. The programs are written in C and executed on a Linux cluster 1350 with 8 computing nodes of 51.2 GFlops. Each node contains 2 Intel Xeon dual core $3.2 \mathrm{GHz}, 2 \mathrm{~GB}$ Ram. The notations used in this section are as follows.

TOL	Tolerances
M	Number of equal-length subdivisions of $[0,1 \mid$
$n_{\max }$	Total number of iterations
T	Time of the parallel execution on 4 CPUs taken in seconds
PRPXPM	Parallel regularization proximal point method
PPPXPM	Parallel projection proximal point method
!NS\&DE	Method is not stable and explosively divergent.

Firstly, we consider two methods PRPXP and PPPXP in a free noise case. Then, PRPXP method is equivalent to PIIR method [8]. We choose the initial approximation $x_{0} \equiv 0$. the parameters $\alpha_{n}=\frac{1}{8(n+1)^{2 / 5}}, \gamma_{n}=\frac{\sqrt{n+1}}{8}$ for PRPXP method and $\mu_{k}^{i} \equiv 3.5, \sigma=0.5$ for Algorithm . The following right-hand sides

$$
\begin{array}{ll}
f_{1}(t)=\frac{t}{9} ; & f_{2}(t)=\frac{7 t+4}{12} ; \quad f_{3}(t)=\frac{t-t^{3}}{6} ; \quad f_{4}(t)=\frac{t^{5}-5 t^{3}+10 t^{2}-5 t+2}{30} \\
\text { and } \quad & f_{1}(t)=-\frac{t}{6 \pi} ; \quad f_{2}(t)=-\frac{2 t+1}{4 \pi} ; \quad f_{3}(t)=\frac{\sin (2 t \pi)}{4 \pi^{2}} ; \\
& f_{4}(t)=\frac{8 \pi^{2} t^{3}-12 \pi^{2} t^{2}-12 t+2 \pi^{2}+6}{24 \pi^{3}}+\frac{\sin (2 \pi t)}{4 \pi^{4}}, \tag{16}
\end{array}
$$

corresponding to exact solutions $x_{e 1}(t)=t$ and $x_{e 2}(t)=\sin (2 \pi t)$, respectively, are given in [8]. Performance results for a small number of iterations are showed in the following tables.

Table 4.1. Free noise cases and small number of iterations

right-hand sides$f_{i} ; i=1,2,3,4$	M	$n_{\text {max }}$	PRPXPM		PPPXPM	
			T	TOL	T	TOL
$\begin{gathered} (15)- \\ x_{e}(t)=t \end{gathered}$	128	500	0.98	0.00636	0.51	0.00147
		750	1.42	0.00492	0.97	0.00115
		1500	2.77	0.00399	1.42	0.00098
	256	500	4.50	0.00518	1.04	0.00192
		1000	8.65	0.00311	2.10	0.00124
$\begin{gathered} (15)- \\ x_{e}(t)=\sin (2 \pi t) \end{gathered}$	128	500	0.93	0.00651	0.48	0.00123
		1000	1.89	0.00519	1.01	0.00086
	256	500	4.38	0.00557	0.99	0.00178
		1000	8.61	0.00323	1.97	0.00107

Table 4.1 shows that in a free noise case, if the number of iterations is small, then the PRPXP method is more time consuming than PPPXP method. For a fixed number of iterations, the PPPXP
method is also more accurate than PRPXP method. The next table shows the results in a free noise case, when the number of iterations is large.

Table 4.2. Free noise cases, large number of iterations, and $x_{e 2}(t)=\sin (2 \pi t)$

M	PRPXPM			PPPXPM		
	$T O L$	$n_{\max }$	T	$T O L$	$n_{\max }$	T
128	0.001051	15000	26.87	0.000475	15000	14.02
	0.000835	50000	80.02	0.000397	50000	41.17
	0.000759	100000	159.29	0.000401	100000	80.51
256	0.000285	553153	4701.12	0.000285	23427	45.87
	0.000230	1173089	9969.18	0.000230	135311	265.09
	0.000200	2798307	23781.01	0.000200	INS\&DE	INS\&DE

From Table 4.2 we observe that the PRPXP method may be more time consuming than PPPXP method, but it is always stable and convergent. On the other hand, due to the dicretization and round-off errors, the PPPXP method may be unstable whenever the number of iterations is large. Moreover, this method may give an unsatisfactory result within a given small tolerance.

Now we consider the noisy case with α_{n} and γ_{n} are chosen as in Remark 3.1. For the sake of simplicity, we use $F_{n, i}(x)=F_{i}(x)+\frac{\sqrt{\alpha_{n}} \rho_{n}(t)}{\gamma_{n}} x$ and $f_{n, i}=f_{i}+\frac{\sqrt{\alpha_{n}} \rho_{n}(t)}{\gamma_{n}}$, where $\rho_{n}(t):=0.25 \varrho_{n} t$ and $\varrho_{n} \in[0 ; 1]$ are normally distributed random numbers with zero mean. In this experiment, we set $M=256$.
The Table 4.3 shows that in all cases, the PRPXP method is stable and convergent. But it may be more time consuming than PPPXP method. On the other hand, due to the error of data, the PPPXP method may be unstable and divergent.

Table 4.3. Noisy data cases

right-hand sides	PRPPM				PPPPM		
$f_{i} ; i=1,2,3,4$	$n_{\max }$	\bar{T}	$T O L$	$n_{\max }$	T	$T O L$	
	1000	8.51	0.00761	1000	2.13	0.00157	
$(15)-$ (w.r.t	20000	166.06	0.00505	20000	45.00	0.00075	
$\left.x_{e}(t)=t\right)$	543875	4615.5	0.00105	2437	4.35	0.00105	
	8752118	68112.6	0.00050	!NS\&DE	$!$ NS\&DE	0.00050	
	1000	8.67	0.00693	1000	2.07	0.00233	
$(16)-($ w.r.t	5000	44.12	0.00575	5000	10.61	0.00098	
$\left.x_{e}(t)=\sin (2 \pi t)\right)$	20000	174.15	0.00545	20000	42.92	0.00104	
	635224	5481.2	0.00100	13047	26.33	0.00100	
	2873115	21924.7	0.00075	!NS\&DE	$!\mathrm{NS} \& D E$	0.00075	

5. Conclusion

In this note two parallel versions of the proximal point method for solving a system of illposed nonlinear operator equations are studied. Based on parallel computation we can reduce the overall computational effort without imposing extra conditions on the nonlinearity of the operators. Experiments show that the PRPXP method is more time consuming but is much stabler than the

PPPXP method, especially in the noisy data case. Other parallel methods for ill-posed problems can be found in $[12,13 \mid$.

Acknowledgements. The work is supported by the Vietnam National Foundation for Science and Technology Development under the contract 101.02.42.09.

References

[1] Y. Censor. On sequential and parallel projection algorithms for feasibility and optimization, Proc. SPIE, vol. 4553, SPIE- The Socicty for Optical Engineering, Bellingham, WA, USA, 2001, 1
[2] M. Burger and B. Kaltenbacher, Regularizing Newton-Kaczmarz methods for nonlinear ill-posed problems, SLAM Numer. Anal. 44 (2006) 153.
[3] R.T. Rockafellar, Monotone operators and proimal point algorithm,SIAM J. Contr. Optim. 14(1976) 877.
[4] O. Guler. On the convergence of proximal point algorithm for convex minimization,SLAM J. Contr. Optim. 29 (1991) 403.
[5] M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point itcrations in Hilbert space, Math. Progr: 87 (2000) 189.
[6] I.P. Ryazantseva, Regularizing proximal point algorithm for nonlinear cquations of monotone type, J. Comput. Math Math. Phys. 42(9) (2002)1295 (in Russian).
[7] Y. Alber and 1. Ryazantseva, Nonlinear Ill-posed Problems of Monotone Type, Springer, 2006.
[8] P. K. Anh, C. V. Chung, Parallel iterative regularization methods for solving systems of ill-posed equations, Appl. Math. Comput., 212 (2009) 542.
[9] P.K. Anh and V.T. Dung, Parallel iterative regularization algorithms for large overdetermined linear systems, Inter. J. Compul. Meth., 7(4) (2010) 525.
[10] F. Liu, M. Z. Nashed, Regularization of nonlinear ill-posed variational inequalities and convergence rates, Set-Valued Analysis, 6 (1998) 313.
[11] T. L.u, P. Neitlaanmaki, X.-C. Tai, A parallel splitting up method for partial differential equations and its application to Navier-Stokes equations,RAIRO Math. Model. Numer. Anal., 26 (6) (1992) 673.
[12] P.K. Anh, C.V. Chung Parallel regularized Newton method for nonlinear ill-posed equations, Numer. Algor., 2011, DOI: $10.1007 / \mathrm{s} 1075-011-9460-\mathrm{y}$.
[13] P.K. Anh, C.V. Chung, V.T. Dung, Cimmino methods for regularizing nonlinear ill-posed problems,Proc. Inter. Confer. Anal. Appl. Math., Saigon Univ., HCM City, March, 13, $2011,67$.

[^0]: - Corresponding author E-mail: anhpk@vnu.ciuvn

