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A bstract. This paper is concerned with two parallel proximal point algorithms for solving 
a sy stem  of' ili-posed equations involving monotone operators. They are parallel versions of 
the projection-proximal point method proposed by Solodov and Svaiter and the regularization- 
proximal point method introduced by Ryazantseva, respectively. The convergence analysis of 
both methods has been investigated. The paper is completed by some numerical experiments.
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1. In troduction

Various problems o f  science and engineering, such as the convex feasibility problems with 
applications ill optimization theory, image processing, radiation therapy treatment planning, etc... (see 
1]), or parameter identification problems with multi-sources [2], can be reduced to finding a solution 

o f  a simultaneous system of possibly nonlinear operator equations.
For solving a maximal monotone operator inclusion, Rockafellar [3] proposed the proximal 

point algorithm, which is in general only weakly convergent [4]. Solodov and Svaiter [5] combined the 
proximal point algorithm with a simple projection step onto intersection of appropriately constructed 
halfspaces to get the strong convergence. Later on, Ryazantseva [6, 7] proposed a strongly convergent 
algorithm combining the proximal point method and Lavrentiev regularization technique.

The aim o f  this article is to apply the projection-proximal point and the regularization-proximal 
point algorithms in a parallel way to the following consistent system of operator equations:

.4,(x) =  0, z=--l,yv, (1)

where H  is a real Hilbert space and /1, \ H  —> H  are continuous monotone operators, i.e.,

(A , {x )  -  A , { y ) , x  -  y)  > 0, Vx, y e  H.

The rest o f the paper is organized as follows. In Section 2 we study a parallel version of the projection- 
proximal point algorithm, which becoiiics llie Solodov - Svaiter’s method if the number of equations 
N  — 1. Section 3 deals with a parallel regularization-proximal point method, which can be regarded as 
a parallel implicit iterative regularization method considered in [8, 9]. The convergence of the method
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is investigated in the noisy data case. Finally, in Section 4, two parallel algorithms are tested by some 
model problems.

2. Para lle l  projection-proximal point method

We begin this section by recalling some notations and results in [5

T heorem  2.1. Let c be any nonempty closed convex set in H , fo r  x ^ y  £  H  and z  ^  c. Then the 
orthogonal projector P c  from  H  onto c satisfies the fo llow ing relations.

< X  -  P c { x ) , z  -  P c { x )  > < ũ ]  (2)

P c { x )  -  P c { y ) f  <  l|a: -  y f  -  \ \ {Pc{x)  - x )  -  {Pc{y)  -  y ) f -

L em m a 2.2. Let A  ■. H  H  be a monotone operator, a; e  /Í ,  /i >  0, Ơ G [0,1) and suppose that 
y E H  satisfies

A{y)  + ịi{y -  x ) + e = Q, where ||e|| <  Ơ max{||yl(i/) ||,  ;u||a: -  yl|}.

Then we have

< x -  y , A { y )  >>  ơma,x{/i|lx -  7/|p, \\A{y)\\'^/n} >  (1 -  ơ)\\A{y)\ \ \ \x -  y \ .

D efine a half-space Hy = [ z  e  H \ < z  -  y , A { y )  ><  o}, then the fo llow ing  fo u r  statements are 
equivalent:

(i) X G H y\  {ii) y = - x \  { in)  A{y)  =  0; (iv)  A{x )  =  0. 

Furthermore,
P h J x ) -  x|| >  (1 -  a )  max{||a; -  y||, \ \A{y)\ \ /ụ.}. (4)

For solving system (1) with a nonempty solution set

S  = { z e H \  A^{z)  = 0, i =  l , 7 V } / 0

and A i are continuous monotone operators, we implement the following parallel algorithm on a com
puting cluster with N  processors.

A lgorithm  2.1. Let XQ e  H  be an arbitrary initial point, Jl > 0 and Ơ e  [0,1).

•  A t iteration k  > 0, fwving Xk, we compute {in parallel) solutions y ị  E H  o f  equations

A { y l )  + ^ ^ M - ^ k )  + e ị = 0, * =  (5)

where / i ị e  (0,77), \\eị\\ < Ơ nvăyi {\\A,{yị)\ \ ,  nị ị ị xk  - y ị \ \ : -
•  D efine {in parallel) projections from  Xk onto half-spaces

H ị = { z e H \ < z - y ^ , , A i { y l ) > < ồ ]

and f in d  an optimal index jfc (1 <  jk  <  N ), such that

Xk -  P„3k{^k)\\ =  max{||xfc -  
"fc i = \ , N
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(6 )
• Compute

X'fc+I =

where W k = [ z  ^  H \ < z -  Xk^XQ -  Xk > <  o}.
I f  Xk+I = Xk then stop. Else, set k ■-= k  + l and repeat.

Since A t is monotone and ụ ị  > 0, each subproblem (5) is well-posed, hence it has a unique 
solution y ị.  At each iteration k, if  X k  G H ị  then P ị ị ì  ( x k )  =  X k  and l|xfc -  P j j i  (x/;)|| =  0. Otherwise, 
we have

P ỵ d x k )  = X k -
< M v D ^ X k  -  y ị  >

M v i )
M V k )  and ị ị x k - P H i i ^ k )

< M y ị ) , x k  -  y ị  >

I M v l )
Clearly, the computation of the optimal index j k  at iteration k  o f  Algorithm does not require much 
additional cost.
The convergence of Algorithm can be established by the technique introduced in [5 .

Lem m a 2.3. I f  the Algorithm  ierminates at a fin ite  iteration fc +  1, then Xk is a solution o f  system  

(1).
Proof. If the Algorithm terminates at a finite iteration k + 1, then we have Xk+I =  (^o) =

X k .  It follows Xk G H ị^  and therefore \\xk -  Pjjii,{xk)\\ =  0. By the definition of jk,  we have 

|xfc -  Pip  (xfe)ll =  0 for all i =  1, N.  Now applying Lemma 2.2 to each equation Ai {y ị )  +  ụ ị i y ị  -  

Xfc)  +  =  0 with respect to X  — X k ,  y  = y ị ,  we  have

P w i ^ k )  -  Xk\\ >  (1 -  cr) max{||xfc -  xjIW, \ \Ai{yị ) \ \ / i4 }  for all i = l , N .

Hence, Aị{yị )  =  0 and y ị  = Xk for all z — 1, or Xfc is a solution o f  system (1).
In what follows, assuming that Algorithm generates an infinite sequence Xk,  we will show that 

knowing the k —th iterate Xk we can define the next one Xfc+1 . For a chosen initial iterate Xo E H  we  
define the set

U{xo) = { x e H \  \/z e  s ,  < z -  x , xq -  X >< 0}.

Clearly, Xo E U{xo).

L em m a 2.4, Suppose that at iteration k-th o f  algorithm we have Xk G U{ xq), then

i. 5 c n W kC  h {̂  n Wk.
ii. Xk+I from  (6) is well-defined and Xk-\-i G U{xo)-

iii. ||xfc+i — Xoll <  | |P5 (a:o) — Xoll fo r  all /c G N, and therefore {xfc} is bounded.

Proof. From the monotonicity o f  A i, for any z G 5  we have

<  A, {y i ) ,  z - y i > = - <  Ai {y l )  -  Ai ( z ) ,  y i ^ - z > < 0 ,  i =  Ĩ J Ĩ .

Then z € and hence s  c  { íìỊ^ iH ị) .  Since Xk G U{xo),  it follows <  z  -  Xk , XQ-  Xk > <  0
for all 2 G S.  Therefore, 2 G Wk  and s  c  Wfc- Thus, s  c  {n f L^ Hi )  n W k  c  h {^ n  Wk,  and the
assumption 5 / 0  implies that Hị^  n  Wk Ỷ  0- Hence Xk+I =  (xo) is well-defined.

Since Xfc4_i is the projection of Xo onto n  Wk,  from (2) we have <  2 -  rcfc+1 , Xo -  X k + I  ><  0 for 
all z G H ị’" n  Wk- The inclusion s  c  H ị'‘ n  W k and the last inequality ensure that <  z — Xk+I,  Xo —
â fc+i > <  0 for all z  e  s ,  therefore Xk+I G U{xq).
From (6), we also have ||xfc+i -  Xoll <  ll^ -  Xoll for all 2: G n  Wk-  Taking into account the
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in c lu s io n s  c  Vz e  s, we have | |xfc+i-xo || <  | | z - x o | | ,  i.e., | |x / t+ i -x o | |  <  ||f*5 (xo)-X'oll,
which implies the boundedness of the sequence {xfc}.

By Lemma 2.4, starting from Xo e  u (xo), we have Xk (xo) for Ẵ: =  0 ,1 , 2 , . . .

L em m a 2.5. Suppose the Algorithm reaches an iteration k  + I, then we have

X f c + i - X o | |  > | X f c - X o | P +  X k + l  -  X k

Xk+I -  Xfcll >  (1 -  cr) m M { || i / [  -  Xk\\, \ \Ai{y ị ) \ \ / ụị } .
1=1,N

(7)

(8)

P?-oof. From the definition o f  W k, it follows that Xk — P w ^ixo)-  Applying (3) with respect to 
c  =  W k, X =  and y  =  xq, we have

\Pwk{xk+i) -  Pwk{xo)f <  I|2:fc+1 -  X o f  -  \\xk+i -  Pw^Xk+i) -  (xo -  Pw^{xo))f.

Now observing that Pw^{xk+i )  =  Xk+I,  since Xfc+1 e  Wk,  and P w ki^o ) =  Xk, we get (7). On the 
other-hand, since Xk+I 6 , it follows

Xk -  Xfc+ill >  ||xfc -  p„jk[xk) \ \  >  maxllo:,/; -  P t p{ xk )
i=\,N  *

(9 )

Using the last inequality and applying (4) with respect to Hy ■.= H ị, A  A^, X ~  .To, // := /4  and 
y  :=  y \ ,  we have \\xk -  Pị j i{xk)\ \  >  (1 -  cr)max{||?/ị -  Xfcll, \\A i{ĩjị)\\/ụ ĩị.). Finally, from the last 
relation and (9) we come to the estimate (8).

T heorem  2.1. Let { x k }  he the infinite sequence generated by Algorithm  , then

lim Xk =  P s {x q ).
k~*oo

Proof. Using (7) consecutively, we have

k~\
k A - + l  -  a^oll^ >  \ \ x k  -  Xoll^ +  | |x fc + i  -  XkW'^  >  ^  | | x ; + i  -  XI

/=0
(10)

oo
From item (iii) o f  Lemma 2.4 and (10), we have -  x i Ý  < | |P5 (xo) -  Xoll^ <  oc, therefore

i=0
limfc__*oo lla-’fc+i ~ ^ k \ \  =  0. Using (8) and taking into account that f j ị  < Ji, we also have lirnA_.oo i|y[. -  
Xfcll =  0, and Iim/;^oo \ \ Ả i { y ị ) \ \  =  0, for all i =  1, 2 , . . . ,
Since {xfc} is bounded, it is relatively weakly compact. Let be an arbitrary weakly convergent
subsequence of the bounded sequence {xfc} and ^  x  as m  —+ oo. Clearly, y ị  z  as TO CO.
By the monotonicity o f  A i ,  for each i =  1 , 2 , and any z  e  H , we  have

0 < <  2 -  y ị ^ , A i { z )  -  A , { y ị j  > = <  z - y ị ^ , A i { z )  > -  < z - y ị ^ , A i { y ị J  > .

Passing to the limit as TO ^  oc and taking into account y ị  ^  X  and Ai { y ị  ) —> 0, we fmd

<  z - x , A ^ { z ) > > 0  y z e H ,  i =  l,2,...,N.
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Now from the m a x i m a l  m onotonicity o f it follows — 0 (see [7]), i — 1, i.e., X  G s .

Xk -  Xo <  1P s {x q ) -  ^0 1 for all k,  we get

. -  Xo -  (P 5 (x o ) -  3:0)

Hence,

=  -  -xof +  \\Ps{xo) -  -  2 <  Xk^ - xo, Ps{xo) - xo >

< 2l|Ps(x'o) -  Xolp -  2 <  Xk„, -  Xo, Ps{xo) - x o >  ■

lim sup \\xk„, -  P s(xo)|p  < 2(\\Ps{^o) -  a;o||^- < x  -  Xo, Psi^o)  -  2.'0 >  ) ■ 
1^00 \  /

(11)

Applying (2) with respect to c  :=  5 ,  X =  X'o and z  := X  e  s , we  have

<  xo -  Ps{xo), Ĩ -'Ps{xo) > =  ||x'o -  Ps(a ;o)l |^ -  < X -  Xo,  Psi^o) - Xo > <  0.

Combining the last inequality with (11), we find -  -̂ ŝ(â ’o)ll =  0 or Xk,„ Ps i ^ a )
as Til —> CO. Moreover, we also have X  = Ps{xo).  Thus, Ps{xo)  is the unique weak accumulation 
point of {.Xfc}. Clearly, every weakly convergent subsequence of {xk}  strongly converges to Ps{xo),  
tlia'cfore X k  Ps{xo) as k  —*■ oo.

3. Parallel regularization-proximal point method

In this section we consider system (1 ) with Aị[x)  :=  F j ( x ) where F i : H  —y 1 , N)
are supposed to be c ^ ’ -inverse-strongly monotone operator (see [10]), i.e.,

<  F^{x) -  F , { y ) , x - y  >> c ^ ||F,(x) -  F^iy) Vj:, y £ H,  c >  0.

We assume as in Section 2 that the solution set s  c  / /  of (1) is not empty, hence s  is convex and 
closed. Furthermore, suppose that 0 ^ s .

N /V
Let F{x)  =  F i(x ) ,  f  =  and A(x) :=  F{x)  -  f  for all X e  I I .  Suppose that instead o f  exact 

i=\ %=\
data {Fi, / i} ,  we are given only noisy ones {Fn,i,  fn, i},  such that

I Fn i {x)  — - P i ( x ) | |  <  / l „ 5f ( | | x | | ) ,  V.X G H ,  \\fn,i “  / i l l  — ^ni n  =  1 ,2 ,

where Sn > 0, hn > 0 are noise levels and g : R+  ^  E +  is a positive nondecreasing function.
N

We put A n A ^ )  ■■= Fn,i{x) -  fn,^, An{x)  -  E  and suppose that the operators :
i=l

H  H  are continuous and monotone. Combining the parallel splitting up technique [11] with the 
regularization-proximal point method [6] for the equation An{x)  =  0, we come to the following parallel 
regularization proximal point (PRPXP) method

^ n , i { z h )  +  ( -\----- 1-7ni =  i 7" +  i =  1, 2, . . . , Â , (12)
\  J  \C n

-  +  i n
\Cn

1 ^

2 =  1

(13)

Clearly, the main computational task (12) can be performed simultaneously by N  parallel pro

cessors. With notation 7 „ :=  — +  7„, the PRPXP method (12)-(13) becomes a parallel implicit
Cyi

iterative regularization method (PIIRM) proposed in [8], whose convergence has been studied in the



noise-free case only.

Denoting 7^ 7^ +  where 7n and Cn are mentioned in (12)-(13), and the minimal - norm
____

solution of the system Ai{x)  =  Fi{x) ~  f i  = 0 {i = I,  N ) ,  we have following convergence result.

Theorem 3.1. Let an cirid Jn be two sequences o f  positive  numbers, such that a-n \  0, 7n +00 
as n  +CX) and suppose that the fo llow ing  conditions are sa tisfied  fo r  a // n  G N and som e constanf 
m i >  0

hng{  |3;^i|) + ỗ n  ^
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7 n (Q n  -  a n + l )  r r i i j o  _

Ct^ CXr\

2 ^  „2 h n 9 Ì \ x m )  + ỗn ^  y /ã
InC^n ^  T'Otko; , /----1 N , r s   /10ổ ( |xT I) +  Ỗ0 7n

Further, we assum e that (1 -  A m \ +  m \)aQ  > 4miA^7o, ao7o >  N  and  | |x^ |p  <  lá ị ,  where

2(2A^7o +  ao)
7o[(l -  47711 +  q ) a o  -  4mi7V7o

2c 1 Ci 7 o(A^7o +  ao)
I -rO “r  o

7oao N'^')o UXQ

(/ioỡ(lk^il) +  <̂ o)

X

270^0 j

Then starting from  0̂ == 0, the sequence z-a converges to x^.
Although the proof o f  this theorem is complicated, it follows the same line as the proof of 

Theorem 2.1 in [8], therefore it will be omited.

R em ark  3.1. The sequences (In — a o ( l  +  n)~^;  7n =  7 o ( l  +  where 0 < p  < -  and the
I N

constants Cl =  - ,  7o =  —  and ao > 4 N  satisfy all the requirements in Theorem 3.1.
4 ao

R em ark  3.2. I f  the operators Fi{x)  are free o f  noise, i.e., h n  =  0 and the noise levels ô n do not 
satisfy a-priori conditions in Theorem 3.1, then method (12)-(13) may not converge to the m inim al 
norm solution of (1). However, we can choose an appropriate stopping number o f  iterates n  — ns  
such that the sequence Zn^ still gives stable approximations for , Moreover, as Ỗ 0.
This problem will not be discussed here due to lack o f  space.

4, Numerical experiments

To test the described above parallel proximal point methods we consider the system of linear 
first kind Fredholm integral equations given in [8integral equations given in [8j:

6

{Aix){ t )  j K i { t , s ) x { s ) d s  -  f^{t) = Q  2 =  1,2,

a

where A'’ =  4; [a,b] =  [0,1] and the kernels K i { t ,  s) = K 2(t, s) =  ^  +  +  ts;
o Ổ z

( 14)

^ 3(i. s) =  _ ‘Ỉ * 1 *’ ; K , ị t , s ) = ịt { l  -  s) t < s

 ̂{t —  s)^ t s 1

( s ~ t )  t +  s 1
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It was shown in [8] that A i, I =  1,2,  . . . , N  are inverse-strongly monotone operators. In partic
ular, A,  are Lipscliitz continuous, i.e., \\Ai{x) -  Ai{y)\\ < L\\x -  y\\ for all X, y  G H,  with

L > m ax  { ( I Í' Kf { t ,  s ) d s Ý ^ ' ^ } . For an arbitrary fixed constant q e  (0 ,1 ) ,  we choose such
1=1, N 0 0

that 0 <  /J, <  / 4  <  Ji, where ỊẤ satisfies L / f x < q < I.
The integrals in the left-hand sides o f  (14) are discretized by the rectangle rule. The programs 

are written in c and executed on a Linux cluster 1350 with 8 computing nodes of 51.2 GFlops. Each 
node contains 2 Intel Xeon dual core 3.2 GHz, 2GB Ram. The notations used in this section are as 
follows.

TOL
M

T

Tolerances
Number o f  equal-length subdivisions o f  [0, 1 
Total number o f  iterations
Time o f  the parallel execution on 4 CPUs taken in seconds 

PRPXPM Parallel regularization proximal point method 
PPPXPM Parallel projection proximal point method 
!NS&DE Method is not stable and explosively divergent.

Firstly, we consider two methods PRPXP and PPPXP in a free noise case. Then, PRPXP 
method is equivalent to PIIR method [8]. We choose the initial approximation Xn =  0. the parameters

a n  =  ------- ^ 7n ~  —^  ̂ for PRPXP method and ị,iị =  3.5, Ơ ^  0.5 for Algorithm . The
8 ( n - f l ) 2 / 5  

following right-hand sides
8

7 t +  4
Ĩ Á t )  =

t -  i'

and

6 ’
2t  +  l 
47T

(15)
30

sin(2í7r)

-  I2 t  +  27t2 +  6

4t]-2

sin(27Tí)
(16)

247t3 ’

corresponding to exact solutions Xei{t)  =  t  and Xe2{t) — sin(27ri), respectively, are given in [8 
Performance results for a small number o f  iterations are showed in the following tables.

Table 4.1. Free noise cases and small number of iterations

righ t-hand sides 
/*; I -  1 ,2 ,3 ,4

M ^^max P R P X P M P PP X PM
T T O L T T O L

500 0.98 0.00636 0.51 0.00147
128 750 1.42 0.00492 0.97 0.00115

(1 5 )- 1500 2.77 0.00399 1.42 0.00098
X e { t ) = t 256 500 4.50 0.00518 1.04 0.00192

1000 8.65 0.00311 2.10 0.00124
128 500 0.93 0.00651 0.48 0.00123

(1 5 )- 1000 1.89 0.00519 1.01 0,00086
X e { t )  = sill(27Tt) 256 500 4.38 0.00557 0.99 0.00178

1000 8.61 0.00323 1.97 0.00107

Table 4.1 shows that in a free noise c*ase, i f  the number o f  iterations is small, then the PRPXP 
method is more time consuming than PPPXP method. For a fixed number of iterations, the PPPXP



method is also more accurate than PRPXP method. The next table shows the results in a free noise 
case, when the number o f  iterations is large.

Table 4.2. Free noise cases, large number of iterations, and Xe2 {t) =  siri(27ri)
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M PR PX PM P P P X P M
T OL ^̂ max T T OL T

0.001051 15000 26.87 0.000475 15000 14.02
128 0.000835 50000 80.02 0.000397 50000 41.17

0.000759 100000 159.29 0.000401 100000 80.51
0.000285 553153 4701.12 0.000285 23427 45.87

256 0.000230 1173089 9969.18 0.000230 135311 265.09
0.000200 2798307 23781,01 0.000200 !NS&DE INS&DE

From Table 4.2 we observe that the PRPXP method may be more time consuming than PPPXP method, 
but it is always stable and convergent. On the other hand, due to the dicretization and round-off errors, 
the PPPXP method may be unstable whenever the number of iterations is large. Moreover, this method 
may give an unsatisfactory result within a given small tolerance.

Now vve consider the noisy case with On and 7„ are chosen as in Remark 3.1. For the sake ot
|. .. TP / \  —  T? Í  \ I \ / ^ P n { t )  J r  t  . V ^ i p n { i )Simpl ici ty,  we use t n i { x )  =  r i [ x )  + X  and Ị n Ạ  =  f i  + , where pn{t) :=  i.).2ĩ)Qnt

In  In
and Qn e  [0; 1] are normally distributed random numbers with zero mean. In this experiment, we set 
M  =  256.
The Table 4.3 shows that in all cases, the PRPXP method is stable and convergent. But it may be 
more time consuming than PPPXP method. On the other hand, due to the error of data, the FPFXP 
method may be unstable and divergent.

Table 4.3. Noisy data cases

right-hand sides PR PPM P P P P M
/.;  1 =  1 , 2 , 3 , 4 T TO L ^max T TO L

1000 8.51 0.00761 1000 2.13 0.00157
(15) - (w .r.t 20000 166.06 0.00505 20000 45.00 0.00075
X e { t )  =  t ) 543875 4615.5 0.00105 2437 4.35 0,00105

8752118 68112.6 0.00050 INS&DE INS&DE 0.00050
1000 8.67 0.00693 1000 2.07 0.00233

(16) - (w .r.t 5000 44.12 0.00575 5000 10.61 0.00098
X e { t )  = sin(27ri)) 20000 174.15 0.00545 20000 42.92 0.00104

635224 5481.2 0.00100 13047 26.33 0.00100
2873115 21924.7 0.00075 !NS&DE INS&DE 0.00075

5. Conclusion

In this note two parallel versions of the proximal point method for solving a system of ill- 
posed nonlinear operator equations are studied. Based on parallel computation we can reduce the 
overall computational effort without imposing extra conditions on the nonlinearity of the operators. 
Experiments show that the PRPXP method is more time consuming but is much stabler than the



Pi^PXP method, especially in the noisy data case. Other parallel methods for ill-posed problems can
be found in [12, 13 .
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