Tổng hợp và tính chất xúc tác quang của vật liệu composit WS₂/g-C₃N₄

Quảng Thùy Trang¹, Trương Thị Mỹ Trúc¹, Sái Công Doanh², Võ Viễn^{1,*}

¹Khoa Hóa học, Trường Đại học Quy Nhơn, 170 An Dương Vương, Thành phố Quy Nhơn, Tỉnh Bình Định ²Khoa Vật lý, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội

Nhận ngày 08 tháng 7 năm 2016

Chỉnh sửa ngày 09 tháng 8 năm 2016; Chấp nhận đăng ngày 01 tháng 9 năm 2016

Tóm tắt: Vật liệu xúc tác quang hoạt động trong vùng ánh sáng khả kiến ngày càng được quan tâm trong việc xử lý môi trường. Trong bài báo này, các vật liệu composit xúc tác quang nWS₂/g- C_3N_4 với tỉ lệ hàm lượng WS₂ và g- C_3N_4 khác nhau được tổng hợp bằng phương pháp đơn giản bởi việc nung hỗn hợp H₂WO₄ và thioure với các tỉ lệ khối lượng khác nhau, trong đó n = $m_{\text{thioure}}/m_{\text{H2WO4}}$. Các vật liệu composit được đặc trưng bởi các phương pháp nhiễu xạ tia X, kính hiển vi điện tử quét kết hợp phổ nhiễu xạ điện tử tia X, hiển vi điện tử truyền qua, phổ hồng ngoại, Raman. Các kết quả chỉ ra rằng các composit bao gồm các tấm nano WS₂ được bao bọc bởi g- C_3N_4 và hàm lượng tương đối WS₂ trong các mẫu composit giảm khi n tăng. Tất cả các composit đều có hoạt tính xúc tác quang phân hủy xanh metylen trong dung dịch nước, trong đó mẫu tương ứng với n = 10 là tốt nhất. Hiệu ứng cộng hợp giữa hai cấu tử WS₂ và g- C_3N_4 trong xúc tác quang đã được quan sát.

Từ khoá: WS₂, g-C₃N₄, composit WS₂/g-C₃N₄, xanh metylen, xúc tác quang.

1. Tổng quan

Những năm gần đây, vấn đề ô nhiễm môi trường ngày càng trở nên nghiêm trọng ở mức độ toàn cầu. Việc gia tăng dân số và phát triển công nghiệp đã dẫn đến việc thải ngày càng nhiều chất độc hại vào môi trường. Các chất độc hại này có thể gây nên các bệnh tật và làm biến đổi khí hậu toàn cầu. Trong số các chất thải đó, đáng chú ý là những chất hữu cơ độc hại, tương đối bền, khó bị phân hủy sinh học, lan truyền và tồn lưu một thời gian dài trong môi trường. Do vậy, việc nghiên cứu xử lý triệt để chúng là mối quan tâm hàng đầu của nhiều quốc gia. Để xử lý các hợp chất hữu cơ độc hại, thời gian gần đây người ta quan tâm đến quá trình xúc tác quang do chúng có ưu điểm như sử dụng năng lượng ánh sáng mặt trời và chất oxy hóa là oxy không khí [1]. Mặc dù đã có nhiều công bố về các vật liệu xúc tác quang, trong đó phổ biến nhất là các oxit bán dẫn như TiO₂, ZnO, WO₃, Ta₂O₅ và các dạng biến tính của chúng [1-3]. Ngoài các oxit, các hợp chất sunfua kim loại cũng rất hấp dẫn trong việc làm

^{*}Tác giả liên hệ: ĐT.: 84-914908789

Email: vovien@qnu.edu.vn

chất xúc tác quang như CdS, MoS_2 và WS_2 do năng lượng vùng cấm bé [4-7]. Tuy nhiên, trong số đó, vẫn còn ít công trình công bố về việc sử dụng WS_2 làm chất xúc tác quang. Cũng như nhiều chất bán dẫn khác, WS_2 ở dạng nguyên chất có hoạt tính xúc tác kém do hiện tượng tái kết hợp electron-lỗ trống quang sinh. Thời gian gần đây một chất bán dẫn dạng polyme hữu cơ có cấu trúc lớp kiểu như graphit g- C_3N_4 (hình 1) thu hút nhiều sự chú ý trong việc nghiên cứu làm chất xúc tác quang [4].

Hình 1. Cấu tạo của một tấm hoàn hảo của g- $C_3N_{4.}$

Trong bài báo này, chúng tôi trình bày tổng hợp vật liệu composit mới $WS_2/g-C_3N_4$ bằng một phương pháp đơn giản và nghiên cứu sử dụng chúng làm chất xúc tác quang với hy vọng vật liệu composit có hoạt tính tốt hơn hai cấu tử riêng biệt WS_2 và $g-C_3N_4$ nhờ hiện tượng cộng hợp.

2. Phương pháp nghiên cứu

Composit WS₂/g-C₃N₄ được tổng hợp theo quy trình sau. Nghiền, trộn vonframic acid với thioure với các tỉ lệ sau 1:10, 1:20, 1:30, 1:40 theo khối lượng. Nung hỗn hợp ở nhiệt độ 500^{0} C trong 3 giờ. Sản phẩm thu được kí hiệu là nWS₂/g-C₃N₄, trong đó n bằng 10, 20, 30 và 40 tương ứng với các tỉ lệ khối lượng của vonframic acid với thioure là 1:10, 1:20, 1:30, 1:40. Để so sánh, một hỗn hợp vonframic acid với thioure với tỉ lệ 1:10 được nung ở 650 °C trong 3 giờ, ký hiệu là WS_2 ; một mẫu chỉ có thioure được nung ở 500 °C trong 3 giờ, được ký hiệu là g- C_3N_4 .

Phổ nhiễu xạ tia X (XRD) của các mẫu được đo trên máy Brucker D8 Advance, ống phát tia X bằng Cu có bước sóng $\lambda = 1,540$ Å, điện áp 30 kV, cường độ dòng ống phát 0,01 A. Hình ảnh SEM được ghi trên máy Nova NanoSEM 450 và TEM được ghi trên Jeol Jem 2100F. Phổ hồng ngoại của mẫu vật liệu được ghi trên máy IRAffinity-1S (Shimadzu). Phổ Raman được đo trên máy T64000 Raman với nguồn laser có bước sóng 647,1 nm và detector CCD được làm lạnh bởi nitơ lỏng.

Hoạt tính xúc tác quang được đánh giá theo quy trình sau. Cho 0,1g xúc tác vào trong 90mL dung dịch xanh methylen có nồng độ 30mg/L đối với mẫu 10WS₂/g-C₃N₄ và nồng độ 10mg/L đối với các mẫu còn lại. Dùng giấy tráng nhôm boc kín cốc sau đó khuấy đều cốc trên máy khuấy từ trong 4 giờ đối với mẫu tỉ lệ 1:10, và 2 giờ đối với những mẫu còn lại để cho quá trình hấp phụ-giải hấp phụ cân bằng. Sau đó, hỗn hợp phản ứng được khuấy dưới điều kiện chiếu sáng bởi đèn dây đốt vonfram (220V-100W) qua kính lọc tia UV có đường kính d = 72mm. Hỗn hợp phản ứng được lấy ra theo thời gian phản ứng. Sau đó ly tâm, tách phần dung dịch để phân tích nồng độ xanh metylen còn lại. Nông độ xanh methylen trong các mẫu được xác định bằng phương pháp đo quang trên máy UV-Vis (UV-1800, Shimadzu).

3. Kết quả và thảo luận

Kết quả đặc trưng nhiễu xạ tia X của các mẫu $nWS_2/g-C_3N_4$ được trình bày trong hình 1. Nhìn chung hình dạng các giản đồ gần như nhau nhưng khác nhau về cường độ tương đối giữa các pic. Pic có cường độ lớn ở 27,4° đặc trưng cho g-C₃N₄ [4]. Pic này có cường độ tăng dần khi đi từ 10WS2/g-C3N4 đến 40WS2/g- C_3N_4 , có thể do hàm lượng g- C_3N_4 tăng. Chiều tăng này đồng biến với tỉ phần thioure, tiền chất tao g- C_3N_4 , có trong hỗn hợp phản ứng ban đầu. Trong tất cả các giản đồ đều xuất hiện hai pic có cường độ mạnh với giá trị 2 theta bằng 32,8° và 58,6°, đặc trưng cho WS₂ [6], và cường độ giảm dần khi đi từ 10WS₂/g-C₃N₄ đến $40WS_2/g-C_3N_4$. Một nhận xét rất thú vị được rút ra ở đây là tỉ lê cường đô của pic ở 27.4° (đặc trưng cho g-C₃N₄) với pic ở 32,8° (đặc trưng cho WS₂) tăng khi đi từ mẫu 10WS₂/g-C₃N₄ đến 40WS₂/g-C₃N₄. Điều này phản ánh tỉ lệ g- C_3N_4/WS_2 tăng theo chiều trên, chiều tăng tỉ phần khối lượng thioure/H₂WO₄ trong hỗn hợp phản ứng. Tóm lại, kết quả XRD minh chứng rằng chúng tôi đã tổng hợp thành công composit bao gồm hai cấu tử WS₂ và g-C₃N₄, trong đó hàm lượng g-C3N4 tăng khi tăng tỉ phần thioure, tiền chất tạo g-C₃N₄, trong hỗn phản ứng.

Hình 1. Giản đồ nhiễu xạ tia X của $10WS_2/g-C_3N_4$ (a), $20WS_2/g-C_3N_4$ (b), $30WS_2/g-C_3N_4$ (c), $40WS_2/g-C_3N_4$ (d).

Hình thái của các vật liệu cũng được đặc trưng bởi kỹ thuật SEM (hình 2). Các hình ảnh chỉ ra rằng bề mặt của các mẫu gần như nhau, đặc trưng kiểu lớp của vật liệu g- C_3N_4 . Kết quả này có thể do g- C_3N_4 bao bọc một lớp bên ngoài WS₂.

Hình 2. Ảnh SEM của $10WS_2/g-C_3N_4$ (a), $20WS_2/g-C_3N_4$ (b), $30WS_2/g-C_3N_4$ (c) và $40WS_2/g-C_3N_4$ (d).

Để có thêm thông tin về hình thái, một mẫu đại diện, $20WS_2/g$ - C_3N_4 , được đặc trưng thêm kỹ thuật TEM (hình 3). Để so sánh, hình ảnh TEM của g- C_3N_4 cũng được trình bày. Hình 3a chỉ ra các tấm (sheet) xếp chồng lên nhau, đặc trưng cho hình thái của g- C_3N_4 . Điều đáng chú ý là hình ảnh TEM của $20WS_2/g$ - C_3N_4 trên các hình 3b. Ở đó, chúng ta dễ dàng nhận thấy các tấm nano màu đậm, có thể là WS₂, được bao bọc bởi các màng mỏng màu nhạt hơn của g- C_3N_4 . Các tấm WS₂ có bề dày khoảng 10 nm. Kiểu cấu trúc này có thể là một lợi thế cho việc cải thiện tính chất xúc tác quang so với các cấu tử ở dạng riêng lẻ.

Hình 3. Hình ảnh TEM của mẫu g- $C_3N_4(a)$, 20WS₂/g- C_3N_4 (b).

Phổ IR của các mẫu $10WS_2/g-C_3N_4$, $20WS_2/g-C_3N_4$, $30WS_2/g-C_3N_4$, và $40WS_2/g-C_3N_4$ được trình bày trong hình 4, trong đó tất cả các mẫu đều có xuất hiện các pic có số sóng 814, 1200-1650, và 3160 cm⁻¹, đặc trưng các dao động có trong $g-C_3N_4$ [4]. Bên cạnh đó, các mẫu tổng hợp còn xuất hiện thêm các vai trong vùng 500 cm⁻¹ - 690cm⁻¹, tín hiệu đặc trưng của liên kết W-S và pic có số sóng 959cm⁻¹ đặc trưng của liên kết S-S [6]. Tuy nhiên hàm lượng của nhóm S-S có trong mẫu không lớn nên các tín hiệu này không rõ ràng. Nhìn chung, kết quả phổ IR của các mẫu đều chứng minh sự có mặt của WS₂ và $g-C_3N_4$ trong các composit $nWS_2/g-C_3N_4$.

 $\begin{array}{l} \mbox{Hinh 4. Phổ hồng ngoại của 10WS_2/g-C_3N_4(a),} \\ 20WS_2/g-C_3N_4(b), \ 30WS_2/g-C_3N_4(c), \\ 40WS_2/g-C_3N_4(d). \end{array}$

Phố Raman được xem như là một công cụ mạnh để đặc trưng dạng lớp của các vật liệu. Vì thế, hai mẫu đại diện $10WS_2/g-C_3N_4$ và $20WS_2/g-C_3N_4$ được đặc trưng thêm phố Raman (hình 5). Như được mong đợi, các phổ đều chỉ ra hai pic có cường độ mạnh hấp thụ ở vùng có số sóng 349 cm⁻¹ và 415 cm⁻¹ tương ứng với pic E^{1}_{2g} và A_{1g} đặc trưng cho dạng lớp của WS_2 [8]. Bên cạnh đó, pic có số sóng 702 cm⁻¹ đặc trưng cho vòng s-triazin, và pic có số sóng 1228 cm⁻¹ đặc trưng cho một số tâm khuyết tật hoặc sự hỗn loạn trong cấu trúc kiểu graphit của g- C_3N_4 [9]. Chúng ta dễ dàng nhận thấy cường độ cả

hai pic 349 và 415 cm⁻¹ tương ứng với mẫu $10WS_2/g$ -C₃N₄ cao hơn nhiều so với $20WS_2/g$ -C₃N₄. Trong lúc đó, nếu so sánh tỉ lệ cường độ pic 702 cm⁻¹, đặc trưng cho g-C₃N₄, với pic 349 hay 415 cm⁻¹, đặc trưng cho WS₂, có thể nhận thấy tỉ lệ này tăng, chứng tỏ hàm lượng g-C₃N₄ trong mẫu $20WS_2/g$ -C₃N₄ cao hơn so với $10WS_2/g$ -C₃N₄. Một lần nữa, kết quả thu được phù hợp với các đặc trưng ở trên.

Hình 5. Phổ raman của $10WS_2/g-C_3N_4(a)$, $20WS_2/g-C_3N_4(b)$.

Để xác định thành phần nguyên tố, các mẫu được đặc trưng bởi kỹ thuật EDS và kết quả được trình bày trong hình 6 và bảng 1. Nói chung tất cả các mẫu đều phát hiện thấy có các nguyên tố W, S và N và không xuất hiện bất kì nguyên tố lạ nào. Kết quả này phù hợp với thành phần của vật liệu. Trong đó tỉ lệ nguyên tử W:S gần bằng 1:2 theo lí thuyết của WS₂ đối với mẫu 10WS₂/g-C₃N₄. Với các mẫu có hàm lượng g-C₃N₄ cao, tỉ lệ mol S/W lớn hơn 2. Điều này có thể do một lượng S có trong g-C₃N₄ đối với các mẫu composit có hàm lượng g-C₃N₄ cao.

Bảng 1. Thành phần của W và S của các mẫu nWS_2/g - C_3N_4 theo phân tích EDS

Mẫu	10WS ₂ / g-C ₃ N ₄	20WS ₂ / g-C ₃ N ₄	30WS ₂ / g-C ₃ N ₄	40WS ₂ / g-C ₃ N ₄
W (%mol)	34,30	26,15	23,07	21,85
S (%mol)	65,70	73,85	76,93	78,15

 $\begin{array}{l} \text{Hinh 6. Ånh EDS của các mẫu 10WS_2/g-C_3N_4(a),} \\ 20WS_2/g-C_3N_4(b), \ 30WS_2/g-C_3N_4(c), \\ 40WS_2/g-C_3N_4(d). \end{array}$

Tóm lại, các kết quả đặc trưng chứng minh rằng WS_2/g - C_3N_4 đã được tổng hợp thành công bởi một phương pháp đơn giản bằng cách nung H_2WO_4 với thioure, trong đó thioure đóng hai vai trò: thứ nhất là chất cung cấp S để tạo WS_2 , thứ hai là tạo một lớp g- C_3N_4 bọc bên ngoài các tấm nano WS_2 . Hy vọng kiểu cấu trúc này sẽ cải thiện hoạt tính xúc tác quang so với dùng các cấu tử riêng lẻ.

Hoạt tính xúc tác quang của các mẫu được đánh giá bởi khả năng phân hủy xanh metylen trong dung dịch nước (hình 7). Để so sánh, hoạt tính xúc tác của WS_2 và g- C_3N_4 cũng được trình bày. Đồ thị chỉ ra rằng, khi so sánh 4 mẫu composit, mẫu 10WS₂/g-C₃N₄ có hoạt tính xúc tác tốt nhất và tốt hơn nhiều so với mẫu WS₂ và g-C₃N₄ tinh khiết. Sau 7 giờ phản ứng, độ chuyển hóa xanh methylen trên mẫu 10WS₂/g-C₃N₄ đạt 72,7%. Trong khi đó, đối với các mẫu composit còn lại, nông độ xanh methylen giảm ít hơn cùng thời gian và thấp nhất là mẫu 40WS₂/g-C₃N₄. Kết quả đánh giá hoat tính xúc tác chỉ ra rằng mẫu 10WS₂/g-C₃N₄ tốt nhất, sau đó đến 20WS₂/g-C₃N₄ và cuối cùng là hai mẫu $30WS_2/g-C_3N_4$ và $40WS_2/g-C_3N_4$ gần như nhau. Kết quả này có thể hàm lượng tương đối của WS₂ cao có trong các mẫu 10WS₂/g-C₃N₄ và 20WS₂/g-C₃N₄. Tuy nhiên, chỉ có WS₂ hay g-C₃N₄ nguyên chất thì hoạt tính xúc tác không cao. Điều này chứng tỏ có một hiệu ứng cộng hợp (synergic effect) giữa hai chất WS_2 và g- C_3N_4 .

Hình 7. Đồ thị biểu diễn sự phụ thuộc C/C_0 của xanh methylene theo thời gian phản ứng đối với các vật liệu $10WS_2/g-C_3N_4$ (a), $20WS_2/g-C_3N_4$ (b), $30WS_2/g-C_3N_4$ (c), $40WS_2/g-C_3N_4$ (d), $g-C_3N_4$ (e) và WS_2 (g).

4. Kết luận

Từ các kết quả thu được ở trên, một số kết luận được rút ra như sau. Các vật liệu composit $nWS_2/g-C_3N_4$ được tổng hợp bằng phương pháp đơn giản bởi việc nung hỗn hợp vonframic acid và thioure ở các tỉ lệ khối lượng khác nhau, $n = m_{\text{thioure}}/m_{\text{H2WO4}} = 10, 20, 30, 40$. Trong các composit, WS₂ ở dang tấm nano được bao bọc bởi các lớp g-C₃N₄. Hàm lượng tương đối của WS_2 giảm và g- C_3N_4 tăng dân khi đi từ các mẫu có *n* tăng từ 10 đến 40. Các vật liệu nWS₂/g- C_3N_4 đều có khả năng đóng vai trò như một chất xúc tác quang phân hủy xanh methylen trong dung dịch nước dưới điều kiện ánh sáng khả kiến. Trong đó, mẫu 10WS₂/g-C₃N₄ có hoạt tính xúc tác quang cao nhất, làm giảm 72,7% hàm lượng xanh methylen trong 7 giờ phản ứng. Có một hiệu ứng cộng hợp giữa WS₂ và g-C₃N₄ trong việc cải thiện xúc tác quang. Hiệu ứng này phát huy khi tỉ phần WS_2 với g- C_3N_4 thích hợp.

Lời cảm ơn

Công trình này được hỗ trợ kinh phí nghiên cứu từ Quỹ Phát triển Khoa học và Công nghệ Quốc gia Việt Nam (NAFOSTED) thông qua đề tài mang mã số 104.06-2015.94. Các tác giả xin chân thành cảm ơn Trung tâm Khoa học vật liệu, Khoa Vật lý, Trường Đại học Khoa học Tự nhiên Hà Nội đã tạo điều kiện đo các ảnh SEM trên thiết bị Nova NanoSEM 450.

Tài liệu tham khảo

- Danilo Spasiano, Raffaele Marotta, Sixto Malato, Pilar Fernandez-Ibanez, Ilaria Di Somma (2015), "Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach", Applied Catalysis B: Environmental 170-171, pp. 90–123.
- [2] D. Sudha P. Sivakumar (2015), "Review on the photocatalytic activity of various composite catalysts", Chemical Engineering and Processing <u>97</u>, pp. 112–133.
- [3] P. Venkata Laxma Reddy, Ki-Hyun Kim (2015), "A review of photochemical approaches for the treatment of a wide range of pesticides", Journal of Hazardous Materials 285, pp. 325–335.
- [4] Maxwell Selase Akple, Jingxiang Low, S. Wageh, Ahmed. A. Al-Ghamdi, Jiaguo Yu, Jun Zhang (2015), "Enhanced visible light photocatalytic H₂production of g-C₃N₄/WS₂ composite

heterostructures", Applied Surface Science 358, pp. 196–203.

- [5] Mengli Li, Lingxia Zhang, Xiangqian Fan, Meiying Wu, Yanyan Du, Min Wang,Qinglu Kong, Linlin Zhang, Jianlin Shi (2016), "Dual synergetic effects in MoS₂/pyridine-modified g-C₃N₄ composite for highly active and stable photocatalytic hydrogen evolution undervisible light", Applied Catalysis B: Environmental 190, pp. 36–43.
- [6] S.V. Prabhakar Vattikuti, Chan Byon, Veerendra Chitturi (2016), "Selective hydrothermally synthesis of hexagonal WS₂ platelets and their photocatalytic performance under visible light irradiation", Superlattices and Microstructures 94, pp. 39-50.
- [7] Yuanhua Sang, Zhenhuan Zhao, Mingwen Zhao, Pin Hao, Yanhua Leng, and Hong Liu (2014),
 "From UV to Near-Infrared, WS₂ Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation", Adv. Mater., pp. 1-7.
- [8] Konda Shiva, H.S.S. Ramakrishna Matte, H.B. Rajendra, Aninda J.Bhattacharyya, C.N.R. Rao (2013), "Employing synergistic interactions between few-layer WS₂ and reduced graphene oxide to improve lithium storage, cyclability and rate capability of Li-ion batteries", Nano Energy 2, pp. 787–793.
- [9] Paul F. McMillan, Victoria Lees, Eric Quirico, Gilles Montagnac, Andrea Sella, Bruno Reynard, Patrick Simon, Edward Bailey, Malek Deifallah, Furio Cora (2009), "Graphitic carbonnitride C₆N₉H₃-HCl: Characterisation by UV and near-IRFT Raman spectroscopy", Journal of Solid State Chemistry 182, pp. 2670–2677.

Synthesis and Photocatalytic Properties of WS₂/g-C₃N₄ Composites

Quang Thuy Trang¹, Truong Thi My Truc¹, Sai Cong Doanh², Vo Vien¹

¹Department of Chemistry, Quy Nhon University, 170 An Duong Vuong, Quy Nhon City, Binh Dinh Province ²Department of Physics, VNU University of Science

Abstract: Visible-light-driven photocatalysis has received considerable attention in environmental treatment in recent years. In this paper, $WS_2/g-C_3N_4$ composites with various contents of WS_2 and g- C_3N_4 were synthesized using a simple method by heating mixtures with different weight ratios of

 H_2WO_4 and thiourea, in which n = m_{thiourea}/m_{H2WO4}. The composites were characterized by XRD, SEM, EDS, TEM, IR and Raman spectroscopy. The results showed that the composites contain nanosheet WS_2 coated by g-C₃N₄, and content of WS_2 in the composites decreases with increasing n. All the composites exhibited photocatalytic activity in degradation of methylene blue in aqueous solution. Among them, the sample with n = 10 (10WS₂/g-C₃N₄) had theo hignest activity. A synergistic effect between WS₂ and g-C₃N₄ in photocatalysis was observed.

Keywords: WS₂, g-C₃N₄, WS₂/g-C₃N₄ composite, methylene blue, photocatalysis.