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Abstract. The correct forms of the equations of motion, of the boundary conditions and of the 
reconserved energy - momentum for the a classical rigid string are given. Certain consequences 
of the equations of motion are presented. We also point out that in Hamilton description of 
the rigid string the usual time evolution equation F  = [F, H )  is modified by some boundary 
terms

1, Introduction

The modified string model, so-called rigid or smooth strings, has been discussed [1 -  11]. The 
action functional in this model contains in addition to the usual Nambu-Gato the term proportional to 
ihc external cufvature of the world sheet o f the string.These models are expected to have many different 
applications in string interpretation of QCD, in a statistical theory o f  random surfaces, in connection 
with two dimensional, quantized gravity [12 .

Our main goal in this paper is to re-derive the classical equations o f motion, boundar)' conditions 
and conserved energy - momentum of the rigid string, obtained by [4 — 6 ]. The first reason to discuss 
in detail such basis is that rigid model is an example of a Lagrangian field theory with higher order 
derivatives. In such case the seemingly standard derivations contain many interesting points which 
in our opinion, have not been sufficient emphasized. The second reason is that one can find in 
the literature many misleading or even erroneous statements concerning in equations of motion, the 
boundary conditions and the energy-momentum.

The plan of our paper is the following. In Section 2 vve present the derivation of the Euler 
-Lagrange equations of motion, of the boundary conditions and o f the conserved energy-momentum in 
the case of genetic Lagrangian with second order derivatives . In Section 3 we present the corresponding 
formulae in the case of rigid string, i. e. for the specific Lagrangian given at the beginning of Scction
3. There we also derive some simple consequences of the equations o f  motion. In the Section 4 we 
point out the peculiar features of the Hamiltonian formalism appearing in the case of the open string.
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2. The Formalism

Let us suppose that the Lasrangian density L  depends on the field function Xị^ÌT.ơ) and on 
their first and second derivatives.

r rTy nơ2
a dr íÌíjZ/(x ^̂ , X'yi i, i i )

For the partial derivatives we introduce the following notation:

dxn dx
—

dú^
dx

“  ỠT ’
Xn = 2 )dơ

where Xjj, =  x^,(r, ơ)  are fields in the two -dimensional space-time IL̂  =  r ;  u* =  - o c  <  T  < +oc; 
/i =  0, 1, 2, ..., D  -  I.. The following formula for the full variation of the action s  is given

ỏ s =  Ị {A„ +  e^^ỡJlj +  ỡoỡiZ}, 
J n

(3)

where

V - 1  0 .

= doUj -  0 , n o

A „ ( r ,  a )  =
dL  d ỒL d

dx
8L

ỠT \ d x u j
iL
ŨƠ

OL

(•1)

(5)

OL 0 Í  ÕL

r íũ (T ,ơ )  =

n i ( r ,  ơ) ==
ÕL

d: ,0

dơ

dL

- Ô ,

ỡ.x', dơ  \  dx"  

+  di ôx'^ -  -^^ỖXị.L^ị]  
Ỡx|,i (G)

/  rsr \d L

Z ( r , a )  =

/  -

ÕL

r /, ỠL . ,
+  7rjĩ~o.ĩụỉ^00ốx/ix):

ốx/il.

Using Stokes theorem we can write s s  in the following form

ỏ s =  f  d ^ u A ^ ố u ^ +  f  U ^ d u ^  +  [ Z { t 2 , tt) -  Z { t 2 , 0 )  +  -  Z { t u O)
J q  J 6n

(S)

(9)

where ỎÍÌ denotes the boundary' of the rectangle ĨÌ. The advantage of the form of the variation ỖS is 
that it involves the least possible number of derivatives of the variations ÒXpi. The remaining derivatives 
of ÔX in formula (9) cannot be removed by any partial integrations. The Z-terms in formula (9) for 
ỖS can be regarded as a contribution from the corner points of the rectangle R. For the closed string 
they cancel each other. However, for the open string they give a nonvanishing contribution if the 

Lagrangian L  depends on
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'I'hc Z-tcrms have appeared bccause in this case of open rigid string we encounter a coincidcnce 
of the foliovving two mathematical obstacles: the presence of the high derivatives in the Lagrangian . 
and the fact that the field x , , ( r ,  a )  is defined on the finite strip 0 ^  7T, and - D C  <  T <  oc ,  which
has boundaries. The classical equations of the motion and the boundar>' conditions for the open rigid 
strinsz follow from the requirement

ỖS =  ()<=> A;j(r, ơ) =  0, 

for the any variation ồXn obeying following conditions

ỒXh{t , ơ ) =  0, r  =  Ti, T'2; ct 6 [0,7T

0' .r, , ,o(r,  a )  =  0 ,  T =  Ti ,  T2 '. Ơ €  [0, 7T

( 10)

( 1 1 a )

(11Ò)

This conditions [ l ib )  is due to the fact that Lagrangian contains the second order derivatives 
with respect to the evolution r .  From {2.11b) it follows that

( r ,  cr) =  0 ,  f o r  T =  T i , T2 ; (7 G [0, 7T 1 2)

On the other h a n d ,  neither nor are fixed for Ơ = 0, Ơ = TT, T G ( t ) .  T2 ).  Now, it

is dear that the requirement (10 ) implies the following equations of motion

A,,(r, ơ) =  0,

and the following boundary conditions

(t =  0 ) =  0 , ơ = tt) = 0 ,

C , , ( t , ơ  =  0 )  =  0 , C ^ ( t , ít =  ^ )  =  0 ,

where
 ̂ _  ỠL . J  d L  ^

and

C J t , ơ ) =  7
01

d x

(13)

( 1 4 )

( 1 5 )

(16) 

(16)

(17)
,1,11

In the case of the closed string ôfi{T,ơ) obey the conditions ÍT =  0) =  c\ í {t , ơ =  ơTĩ).
Then, the variation principle implies only the equations motion (13).

Now, let us pass to the derivation of the energy-momentum four-vector corresponding to the 
acticn . We again use the formula

=  const. (18)

Assume the Lagrangian is invariant, =  0 and ỔS =  0 with the conditions x ^ , ( r , c r )  obeys

the equations of motion (13), and conditions (14) and (15). From (9) we have

dơ
OL r, (  d L  \

Ox
ÕL

d x
ÕL

Ơ = T Ĩ
d x

(19)
Ơ — Ồ



114 N.s. Han  /  VNU Journal o f  Science, M athem atics  - Physics 24  (2008) I 1 I - I I 8

is constant during the T-evolution .We notice that the two last terms on the right hand side of formula 
(19) cancel with the term d ơ d ị { - ^ ^ ) .  Therefore the final formula for the energy- momentum four 
-vector has form

p , =
ÕL

dx
+  d i

ÕL
d x fi,Oi J  _

(20)

where

=  (21)

Integrating formula (21) over Ơ, and taking into account boundary conditions (14) we again 
obtain that

ỠOP/. =  0 . (2 2 )

This is a check that our formulae (21) and (22) are correct. By a similar reasoning we obtain
a conserved angular-momentum tensor for rigid string. The only difference is that now

ếxụ ,=  (23)

instead o f formula (18). Here LOfiiy =  are the six infinitesimal parameters of Lorentz transfor
mations. After a partial integration, contribution o f the Z-tenns is canceled by each other.The final 
formula forM^i, has the following form.

/ dơ{xi,p^y -  +  /  dơ
Jo Jo

where is the momentum density given by formula (2 0 )

ÕL ÕL

V d x
-X

i/,Oz
(24)

3. The Rigid String

For the rigid string the Lagrangian has the form

1 d

L  V ^ ( - 7  +  a a x ^ n x f , ) ,

dx  
'd^ó

1 a
d r

-jxx') x'l  ̂ -  x'^x
+

d
ÕT

{xx')  x ‘

\ / = ỡ

'25'

(26)

where 7  >  0 is the constant with dimension of the squared mass, a  7  ̂ 0 is the dimensionless constant 
which specifies the rigidity of the string world sheet. □ is the Laplace-Beltrami operator for the 
metric tensor Qij.g =  det  II Qij ||.In the Minkowski space-time the metric with signature 7/,;. =  
d m 5 ( + l , - 1 , - 1 , - 1 , . . . )  For a  =  0 we would obtain the usual Nambu-Gato string.In the case of 
Lagrangian (25) equations o f  motion have the form

(7  -  a U x ^ U x ^ ) a x ^  +  2a  =  0 (27)

where VaX

, (28)

Equation (27) are very complicated . They contain fourth -order partial derivatives and ncnlin- 
earities . For a  =  0 they reduce to equations o f  motion for the Nambu-Gato string.

(29)Uxịi =  0 .
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I-quations (29) arc also nonlinear . However, it is a well-known fact (hat tỉicy can be locally 
linearized b> choosing so callcd orthonormal coordinates on the world sheet with following conditions

XX'i-' 0, x-2 >  0. x'^ < 0. x'^ -  -x'-^ (30)

=()<;=> (Oo -  d ỉ )  x ,c(t , Ơ) = 0. (31)

The functions a) ,  Cf,(r,  a)  which appear in boundary conditions in the case of Lagrangian
(25) have following form

Dị,{T. ơ) =  \ / ^ ( 7  -  x\xx^jkOxf,  +  cqno{3.8)

+ 2aŨo +  2adj  ;

C , , Ì T . a ) = ^ - 2 a ự ^ c / ^ D x , , .

The cncr^y-momcntum density has the following form

p,. =  -  a a x ^ a x ^ ) x i , ^ j  +  2aOo ( v ^ i y ^ D x , , )  +

+  2Q v ^ y ”V ^ '

In the orthonormal coordinates this formula is simplified to

Pli  =  -i'lc
d~xi^d‘̂ x^, 0~x„x^

-  a —  Ò -- +  4 a
/ . \ 2
X>2 / 2 

\ /

+  2aOo
\x .2

(32)

(33)

In the Nambu-Gato a  — 0

Investigations of the rigid string model are not easy to carry out because equations o f motion of 
the classical string and the corresponding canonical structure are rather complicated.

4. Hamilton description of the open rigid string

Discussion of Hamilton formulation of dynamics of systems with reparametrization invariance, 
which is a special case of local gauge invariance, is complicated by a problem of constraints. In order 
to avoid this obstacle we shall discuss the Hamilton description of the rigid string in the physical 
gaime which is defined by the requirement that the evolution parameter T is equal to the physical time

.TO
x o ( r ,  cr) =  r .  (36 )

In this gauge, the independent dynamical variables are X ị { t , ơ ) , i  =  1 ,2 ,3  Í =  Xo . Variations 
are now replaced by

f ( r ,  ơ ) -> x ( r ,  ơ)  +  ố .x (r ,ơ ) ,  (37)

where Ic = Xi -  The considerations o f  section 2 can be repeated with the only difference that the index 
Ị.L =  0,1, 2 ,3  is now replaced by the index z =  1, 2, 3. In particular,the equations of motion (13) and 
the boundary conditions have the form given by formula (14 -  15) with the replacement ụ  I. From 
the invariance under the spatial translations

ỖX =  e =  const, (38)
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s ~  dt dơL  
Jti Jo V

The result is

P o =  r d a i x ^  + x  
Jo I Ổ X

(39 )

( .10)
d x  \ d x  J .

In order to obtain this formula , the equations of motion and and the boundary conditions have 
been used. Also some partial integrations over Ơ have been performed

In the case of Lagrangian L with second order derivatives there are two independent ’'configu
ration space-type” variables

q\a = Xa,q2 = Xi, (41)

and the corresponding canonical momenta

d L  d f O L \  0  f  d L \
P i n  — - 7 ;--------- Ỉ- -7̂  TTT- +  Tị— 1 ^ - r  ■ ( ' 1^ )oq2a OT \ d q 2 J dơ  \ d q 2 , J

The Lagrangian L is regarded as a function of variables q i ,q \ ,  (?2 - Q'2 , f/2 -Thc Hamilton is defined 
by the formula

d L
P2a = -

d(l2a ’
(43)

where q2 is unique function of P2 and of the other variables obtained by solving for q'2 . The function 
Q2 is unique because we have fixed the gauge. The equations of motion (13) arc equivalent to the 
following set of Hamilton equations of motion:

Ỉ Ỉ  =  -Pla<72a -  P2a(ị2a -  L  {qi,q[ , q " l ,q 2 , <72, i/2) ,

where

is Hamilton functional
•rr/•TT _ rn ( . .BL

H =  d ơ H  =  / f i ơ < x ^  +  x 
Jo Jo I dx

. _  ỎH , _  ỖH

ôpì ’ ^  (5p2 ’
ỖH . ỎH 

P i  =  T — ; P 2  =  T — , 
oqi 0(12

H  ^  H  ( ợ i ,g í ,g ” i:Ợ2 ,Ợ2,(?2) 

■^dL

(44)

(45)

(46)

[d L  ^ /Ỡ L ^ f d L V
^  - Ỡ 0 ^ -  Oi -  L

_0x \ d x  J K d x  / .
and

Sqi dqi d ơ  V ổ g Ị /  ổơ^

ỖH f ( m \  8 H _ _ d H _  ỖH _  OH
Ôq2 ỡ (?2 d ơ  \ d q 2 J  ôpi ~  dpi  ỖP2 dp 2 ’

are variational derivatives o f the functional H. Comparing H with the energy Po we see that

(48)

H  = P n - dơdị
■BL

X
L,dL

dx
=  Po -

ax ơ=0

Thus, in the case of the open string H difTers from Pq.

/  d ơ F  { q i ,q [ ,q \ ,q 2 ,q 2 ,P i ,P 2 )  ■
Jo

(49)

(50)
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U si im  H a m i l t o n  eq u a t io n s  o f  m o t io n  (4 7)  w e  m ay  wri t e

117

clF
dơ

( OF OF ■ OF ■, OF . OF . ^
1 +  Õ 2 +  T.— Pi +  P2

VỠC/1 Oq[  0(12 O p i  O p '2
(51)

da
6F

Sq\
<ii +

ỖF ỖF
92 + X 

ÒỢ2 ỏpl àp2
+

' D F 0 /  O F  Y Ỡ F
Ơ — TT O F  .

f
dq[ d ơ

91
^=0 1 ơ=0

Ơ =  7T

ơ = 0

(52)

Equation (50) has a rather usual implication that Hamilton n  might not be a constant at the 
motion. From Eq. (50) it follows that

d F
clt

(52)

■53)

■ F, / / }  +  ’’the boundary terms” 

where Poisson bracket [ F .H ]  is by definition

Jo \  Spi ỖCH ỗpi ỗqi ÔP2 ỗqi ỏP2 ỏ'<72 /

The boundary terms (the last three terms on the right hand side of formula (50)) vanish in the 
case of closed string. In the ease of open string they give a non-vanishing contribution even in the 
case of Nambu-Gato string.

—  =  ’’the boundary terms” , (54)
dt

because of boundary condition (14) which in this case reduces to =  0 for cr =  0 , 7T. In the case of 
Lagrangian L with second order derivatives , boundary condition (53) to the form

d H

d x ‘

ơ = n

ơ = 0

d L

d x '

a=n
=  0 . (55)

ơ = 0

In the case Nambu-Gato string the boundary tenns ill Eq, (53) reduce

d H
dt

=  - a \ r ,  0/ dơơị x —r
Jo \  Ox

(56)

The right side of equation (55) does not vanish, in general . Therefore, ^  7  ̂ 0. From equation 
'55) it follows that

^ d L
X ---r-

^  d x j
57)H +  dơOị 

J o
is constant during the motion, but this just the energy Po is given by formula (39). In general, the 
boundary terms will also be present in other gauges, because their appearance is due to the facts that
the Lagrangian contains second order derivatives and range of the parameter Ơ is finite.However, in
some particular cases the boundary terms can vanisli. For example , in papers a gauge is used which
is physical, i. e x o ( r ,  ơ )  =  T, and orthogonal, i. e. X X =  0,



5. Conclusion

The equations of motion, o f  the boundary conditions and of the energy - momentum for ihe 
classical rigid string are reconserved. Certain consequences of the equations of motion are presented. 
We also point out that in Hamilton description of the rigid string the usual time evolution equation 
F  — {F, H }  is modified by some boundary terms.
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