Assessment of Genetic Relationship of some Horseshoe Bats (Chiroptera: Rhinolophidae) in Vietnam Using Cytochromoxydase Subunit I (*COI*) Gene Sequence

Tran Thi Nga¹, Tran Thi Thuy Anh¹, Do Thi Thanh Huyen², Nguyen Truong Son³, Vu Dinh Thong³, Nguyen Van Sang¹, Hoang Trung Thanh^{1,*}

¹Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam ²High School for Gifted students, VNU University of Science, 182 Luong The Vinh, Hanoi, Vietnam, ³Institute of Ecology and Biological Resources, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

> Received 11 August 2016 Revised 25 August 2016; Accepted 09 September 2016

Abstract: DNA barcoding was used to examining the genetic relationship between some *Rhinolophus* bat taxa (*R. malayanus, R. cf. malayanus, R. marshalli, R. cf. marshalli*) in Vietnam using cytochrome oxidase-I (*COI*) gene sequence. Through this study, we constructed the phylogenic trees and analysed genetic relationships between some *Rhinolophus* taxa collected in Vietnam. The obtained phylogenetic tree showed two well-defined clusters. The genetic distances between species varied from 2.7% to 16.3%. The smallest distances were recorded between species from the same group whereas the largest distances were between species from the different groups. Genetic data supported the previous conclusion based on morphological classification of *R. malayanus, R. cf. marshalli, R. cf. marshalli*.

Keywords: Genetic relationship, COI gene, Rhinolophus, Vietnam.

1. Introduction

Mitochondrial DNA is widely used as a tool in identifying species, evaluating genetic and phylogenetic relationships in different taxa and applying to conserve biodiversity [1, 8]. Recently, mitochondrial DNA are also used as an useful tool in bat researches, including describing new taxa [9], revealing cryptic species [10, 11] and classifying different bat species [12-14].

In Vietnam, only a few researches have used mitochondrial DNA for genetic analysis

and classification of bat species [9], 15 17][17]. Among mitochondrial DNA sequences, the Cytochrome oxidase - I (*COI*) sequence is considered a reliable, cost-effective and accessible solution for species identification [18]. In this study, we aimed to evaluate the genetic variation and phylogenetic relationships of some species of the genus *Rhinolophus* (horseshoe bat) in Vietnam by analyzing the sequence of *COI*.

2. Materials and Methods

Materials: 9 samples of *Rhinolophus* bat species collected from different locations in

^{*} Corresponding author. Tel.: 84-4-38582331

E-mail: thanhht_ksh@vnu.edu.vn

Vietnam (Table 1) were used in this study. The samples were collected from the muscle of the

vouchers or from the patagium of the released bats and preserved in 95% ethanol.

Symbol	Samples	Location
B2	R. cf. malayanus	KienGiang province
B3	R. malayanus	Quang Tri province
B4	R. malayanus	Quang Tri province
B5	R. cf. malayanus	KienGiang province
B6	R. cf. malayanus	KienGiang province
B9	R. marshalli	ThanhHoa province
B10	R. marshalli	ThanhHoa province
B12	R. cf. marshalli	Lam Dong province
B13	R. cf. marshalli	KonTum province

Table 1. Samples collected and used in this study

DNA extraction: Total DNA was extracted according to the Sambrook [19] with the following steps. Firstly, each sample was added with 600 µl of tissue lysis buffer (contains 0.1M NaCl, 0.05M EDTA pH8, 0.05M Tris-HCl pH8, 1% (w/v) SDS). The sample was then grinded and added with 15 µl proteinase K (20mg/ml) before being incubated overnight at 56°C. The sample was then added with 600 µl Phenol-Chloroform-Isoamyl alcohol (PCI) (25:24:1 v/v) and gently mixed 3 minutes before centrifuging at 12000 rpm for 15 minutes at 4°C. The supernatant was tranferred to a new 1.5 ml microcentrifuge tube and added with NaOAC 3M pH 4 (1:10 v/v the sample) and ethanol 100% (2:1 v/v the sample), then incubated at -20°C overnight. After that, the sample was centrifuged at 12000 rpm for 15 minutes at 4°C. The supernatant was discarded and the DNA pellet was dissolved with 500 µl ethanol 70% before centrifuging at 12000 rpm for 15 minutes at 4°C. The supernatant was discarded and the DNA pellet was air-dried to drain off any excess ethanol. DNA pellet was dissolved in 50 µl TE buffer (Tris-HCl 0.01M pH8, EDTA 0.5M pH8) and stored at -20°C. To check the quality of the extracted DNA, samples were analyzed by DNA electrophoresis

on agarose gel and stained with FloroSafe before being visualized under UV Light.

PCR amplification of COI gene: COI gene was amplified by universal primers: VF1d (5'-TTCTCAACCAACAARGAYATYGG-3') and VR1d (5' -TAGACTTCTGGGTGGCCRAARAAYCA-3') [20]. The amplicons were approximately 700 bp in length. PCRs (polymerase chain reactions) were carried out in 20 µl volumes. Each reaction contained 6 to 7 µl of Deionized distilled water (DDW), 1 µl of each primer (10 µM), 10 µl of 2xPCR Master mix Solution (i-Taq) (iNtRON), and 1 to 2 µl of DNA template. The reactions were run under the thermal cycle of an initial denaturation at 94°C for 4 min followed by 35 cycles of 94°C for 30 s, 60°C for 30 s, 72°C for 1 min, and a final elongation cycle at 72°C for 5 min. PCR products were checked using electrophoresis on a 2% agarose gel.

DNA sequencing: PCR products were purified using MEGA quick-spin TMTotal Fragment DNA Purification Kit (iNtRON). Purified DNA samples were sent to the 1st Base Company (Singapore) for sequencing. The sequencing was performed in 1 direction using the forward primer. The results were analyzed by Sequencer v.4.1. The DNA sequences were checked authenticity by comparing with the data in Genbank using Blast tools in website http://blast.ncbi.nlm.nih.gov/Blast.cgi [8, 21].

Phylogenetic relationships were reconstructed based on 9 COI sequences generated in this research and from 15 COI sequences of reference bat species obtaind from GenBank (Table 2). The phylogenetic tree was constructed using Maximum Likelihood (ML) with a Kimura-2-parameter (K2P) substitution model, and Maximum Parsimony. Bootstrap support based on 1000 replicates was estimated. All analyses were performed in MEGA 6.0 [22].

No.	Species names	Genbank No. (COI)	Voucher numbers for this study
1.	R. affinis	GU684798	
2.	R. macrotis	HM541601	
3.	R. malayanus	HM541619	ROM MAM 118045
4.	R. malayanus	HM541620	ROM MAM 118046
5.	R. malayanus	HM541621	ROM MAM 118077
6.	R. malayanus	HM541622	ROM MAM 118082
7.	R. malayanus	HM541623	ROM MAM 118104
8.	R. malayanus	HM541624	CMF980210-04
9.	R. marshalli	HM541625	HZM 4.35974
10.	R. marshalli	HM541626	EBD 23915
11.	R. marshalli	HM541627	EBD 24975
12.	R. marshalli	HM541629	ROM MAM 117825
13.	R. paradoxolophus	HM541668	
14.	R. philippinensis	HM541772	
15.	R. stheno	HM541823	

Table 2. GenBank accession numbers

3. Results and discussion

3.1. Total DNA extraction

Total DNA was extracted and analyzed in 1% agarose gel (**Fig. 1**). Although all bands are smear, the total DNA bands of all samples with the theoretical size, more than 10kb. The clearly bands indicate that DNA concentration is quite high. Therefore, these DNA can be used for PCR amplification of COI gene.

3.2. PCR amplification of COI gene

All PCR products appeared with only one clear, bright band, in the expected size (**Fig. 2**). It suggests that we successfully amplified COI genes from 9 *Rhinolophus* samples, PCR reaction used primers with high specificity. After PCR products were purified, they were sent to the 1st Base Company (Singapore) for DNA sequencing. The sequencing was performed in 1 direction using the forward primer.

3.3. Phylogenetic analysis

The genetic distances between species analysed in this research varied from 2.7% to

16.3% (Table 3). These distances are higher than the sequence divergence among *Rhinolophus* species reported by Guillén *et al* [23] (1.5%-15%). The smallest distances were recorded between species from the same group whereas the largest distances were between species from the different group. The mean genetic distance between species was larger between groups than within groups.

The maximum likelihood (ML) tree recovered two well-defined clusters composed of *R. malayanus*, *R. affinis*, *R. stheno* in the first cluster in *R. megaphyllus* species group, and *R. philippinensis*, *R. marshalli*, *R. paradoxolophus*, *R. macrotis* in the second cluster in *R. philippinensis* species group (Fig. 2).

Within the first cluster, *R. malayanus* forms a well-supported monophyletic cluster and itself separates into two clusters. B2, B5, and B6 samples (*R.* cf. *malayanus*) are genetically close with bootstrap support 98%. Moreover, in pairwise distance analysis, they are exactly alike with the number of base differences per site is 0% (Table 3). COI sequences of *R.* cf. *malayanus* samples (B2, B5, and B6) differed from COI sequences of *R. malayanus* by 2.3-2.9%. The difference might appear among different species belong to the *Rhinolophus* species [22]. The difference of COI sequences between *R*. cf. *malayanus* and *R*. *affinis*, *R*. *stheno* (which belong to *R*. *megaphyllus* group) is over 12%. This result agreed with a previous study revealing a significant different between *R*. cf. *malayanus* specimens and *R*. *malayanus* specimens based on morphological study [1]. Morphological and genetic analysis suggest that *R*. cf. *malayanus* (B2, B5, and B6) might belong to another taxa, close to *R*. *malayanus*. This findings should be confirmed with more intensive studies in near future.

Within the second *cluster*, *R.marshalli*, *R.* paradoxolophus and R. macrotis form a subcluster whereas R. philippinensis itself forms a sub-cluster. Of all the R. marshalli samples collected in this study (B9, B10, B12, B13), the samples B12, and B13 form a well-supported sister relationship with R. marshalli HM541626 (bootstrap support 89%); B9 is closer to R. marshalli HM541625 and *R*. marshalli HM541625 whereas B10 itself is separated from all other samples and as well as from published sequences of R. marshalli, R. paradoxolophus and R. macrotis. Samples in this cluster slightly differed from each other by 0.3-3.2%. In contrast, they significantly differed from *R. philippinensis* by over 11% (Table 3).

Fig.1. The total DNA extraction of Rhinolophus samples in 1% agarose gel marker 1 kb.

Fig.2. The PRC productions in 2% agarose gel electrophoresis (Lane MK represented marker 100bp).

Fig. 3. Maximum likelihood tree of COI gene in R. megaphyllus and R. philippinensis species group.

Γable 3. Percentage of differen	ces per site among COI sequen	ces using Pairwise Distances
		()

No.	Species	1	2	3	4	5	6	1	7 8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	B2_R.cf.malayanus			_							ļ							_						
2	B3_R.malayanus	0.027																						
3	B4_R.malayanus	0.028	0.013																					
4	B5_R.cf.malayanus	0.000	0.027	0.025																				
5	B6_R.cf.malayanus	0.000	0.027	0.025	0.000																			
6	R.malayanus_HM541621_ROM_MAM_118077	0.029	0.005	0.013	0.029	0.029																		
7	R.malayanus_HM541622_ROM_MAM_118082	0.027	0.003	0.011	0.028	0.028	0.005																	
8	R.malayanus_HM541623_ROM_MAM_118104	0.026	0.002	0.010	0.026	0.026	0.003	0.002	2															
9	R.malayanus_HM541624_CMF980210-04	0.026	0.002	0.010	0.026	0.026	0.003	0.002	2 0.000															
10	R.malayanus_HM541620_ROM_MAM_118046	0.026	0.008	0.006	0.026	0.026	0.009	0.008	8 0.006	0.006														
11	R.malayanus_HM541619_ROM_MAM_118045	0.023	0.015	0.013	0.023	0.023	0.017	0.015	5 0.014	0.014	0.014													
12	R.affinis_GU684798	0.132	0.138	0.143	0.133	0.133	0.134	0.132	2 0.134	0.134	0.137	0.139												
13	R.stheno_HM541823	0.130	0.135	0.139	0.131	0.131	0.129	0.131	1 0.130	0.129	0.133	0.137	0.072											
14	B9_R.marshalli	0.102	0.113	0.108	0.102	0.102	0.119	0.117	0.115	0.115	0.109	0.112	0.136	0.125										
15	B10_R.marshalli	0.108	0.112	0.107	0.107	0.107	0.117	0.116	6 0.114	0.114	0.108	0.113	0.136	0.124	0.022									
16	B12_R.cf.marshalli	0.104	0.116	0.111	0.105	0.105	0.119	0.118	3 0.116	0.116	0.110	0.113	0.139	0.127	0.009	0.032								
17	B13_R.cf.marshalli	0.105	0.115	0.111	0.104	0.104	0.122	0.120	0.118	0.118	0.112	0.115	0.139	0.128	0.009	0.032	0.000							
18	R.marshalli_HM541629_ROM_MAM_117825	0.111	0.112	0.112	0.110	0.110	0.111	0.110	0.108	0.108	0.104	0.111	0.135	0.125	0.022	0.038	0.024	0.024						
19	R.marshalli_HM541627_EBD_24975	0.105	0.115	0.110	0.104	0.104	0.114	0.113	3 0.111	0.111	0.105	0.110	0.132	0.123	0.000	0.025	0.010	0.010	0.021					
20	R.marshalli_HM541626_EBD_23915	0.111	0.122	0.117	0.110	0.110	0.120	0.119	9 0.117	0.117	0.111	0.116	0.135	0.126	0.006	0.032	0.003	0.003	0.022	0.006				
21	R.marshalli_HM541625_HZM_4.35974	0.112	0.121	0.116	0.112	0.112	0.124	0.119	0.119	0.119	0.112	0.119	0.140	0.124	0.000	0.022	0.014	0.014	0.026	0.000	0.010			
22	R.macrotis_HM541601	0.117	0.123	0.122	0.117	0.117	0.126	0.125	5 0.123	0.123	0.117	0.123	0.149	0.134	0.037	0.055	0.037	0.037	0.031	0.037	0.037	0.043		
23	R.paradoxolophus_HM541668	0.113	0.117	0.115	0.112	0.112	0.117	0.116	6 0.114	0.114	0.108	0.116	0.134	0.128	0.027	0.043	0.031	0.030	0.031	0.027	0.027	0.033 0	1.042	
24	R.philippinensis_HM541772_Sabah	0.148	0.156	0.154	0.147	0.147	0.155	0.157	0.155	0.155	0.155	0.151	0.163	0.152	0.117	0.119	0.118	0.117	0.116	0.117	0.117	0.128 0	1.120 (J.119

4. Conclusion

Genetic analysis of some Rhinolophus bat taxa (R. malayanus, R. cf. malayanus, R. marshalli, R. cf. marshalli) in Vietnam using COI gene sequences agreed with the morphological classification of these Rhinolophus bat taxa. This preliminary result suggests that R. cf. malayanus (B2, B5, and B6) might belong to another taxa, close to R.

malayanus. This findings should be confirmed with more intensive studies in near future. This result also indicated that COI gene can be used as molecular marker to analyze genetic relationship among bat species.

Acknowledgements

This research is funded by the Vietnam National University, Hanoi (VNU) under project number QG.15.19. We thank all staff in Departments of Genetics and Vertebrate Zoology for their assistance.

References

- S. Desmyter and M. Gosselin, COI sequence variability between Chrysomyinae of forensic interest, Forensic SciInt Genet, 3 (2009)89.
- [2] S. Hemmerter, J. Slapeta and N.W. Beebe, Resolving genetic diversity in Australasian Culexmosquitoes: incongruence between the mitochondrial cytochrome c oxidase I and nuclear acetylcholine esterase 2, MolPhylogenetEvol, 50 (2009) 317.
- [3] S. N. Kutty, T. Pape, A. Pont, B. M. Weigmann. and R. Meier, The musCOIdea (Diptera: Calyptratae) are paraphyletic: Evidence from four mitochondrial and four nuclear genes, MolPhylogenetEvol, 49 (2008) 639.
- [4] R. D. Bradly, R. J. Baker, A test of the genetic species concept: cytochrome-b sequences and mammals, Journal of Mammalogy, 82(4) (2001) 960.
- [5] P. D. N. Hebert, M. Y. Stoeckle, T. S. Zemlak, C. M. Francis, Identification of birds through DNA barcodes, PLoS Biology 2 (2004) e312.
- [6] M. A. Smith, N. A. Poyarkov, P. D. Hebert, COI DNA barcoding amphibians: take the chance, meet the challenge, Molecular Ecology Resources 8 (2008) 235.
- [7] M. Pfunder, O. Holzgang, J. E. Frey, Development of microarray-based diagnostics of voles and shrews for use in biodiversity monitoring studies, and evaluation of mitochondrial cytochrome oxidase I vs. cytochrome B as genetic markers, Molecular Ecology 13 (2004) 1277.

- [8] C. M. Francis, A. V. Borisenko, N. V. Ivanova, J. L. Eger, B. K. Lim, A. Guillen-Servent, S. V. Kruskop, I. Mackie, P. D. N. Hebert, The Role of DNA Barcodes in Understanding and Conservation of Mammal Diversity in Southeast Asia, PLoS ONE 5(9) (2010) 1.
- [9] V. D. Thong, S. J. Puechmaille, A. Denzinger, C. Dietz, G. Csorba, P. J. J. Betes, E. C. Teeling and H. U. Schnitzler, A new species of Hipposideros (Chiroptera: Hipposideridae) from Vietnam. Journal of Mammalogy, 93(1) (2012) 1.
- [10] F. Mayer, O. Helversen, Criptic diversity in European bats, Proc. R. Soc. Lond. B 268 (2001) 1825.
- [11] K. Sun, J. Feng, Z. Zhang, L. Xu, Y Liu, Criptic diversity in Chinese rhinolophids and hipposiderids (Chiroptera: Rhinolophidae and Hipposideridae), Mammalia, 73 (2009) 135.
- [12] G. Li, G. Jones, S. J. Rossiter, S-F. Chen, S. Parsons, S. Zhang, Phylogenetics of small horseshoe bats from East Asia based on mitochondrial DNA sequence variation, Journal of Mammalogy, 87 (6) (2006)1234.
- [13] E. L. Clare E.L., B. K. Lim, M. D. Engstrom, J. L. Eger J.L., Hebert P.D.N., DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes 7 (2007) 184.
- [14] P. Campbell, C. J. Schneider, A. M. Adnan, A. Zubaid, T. H. Kunz, Phylogeny and phylogeography of Old World fruit bats in the Cynopterusbrachyotis complex. Molecular Phylogenetics and Evolution 33 (2004) 764.
- [15] V. D. Thong,, S. J. Puechmaille, A. Denzinger, P. J. J. Bates, C. Dietz, G. Csorba, P. Soisook, E. C. Teeling, S. Matsumura, N. M. Furey, H. U. Schnitzler, Systematics of the Hipposideros turpis complex and a description of a new subspecies from Vietnam. Mammal Rev., Volume 42, No. 2 (2012) 166.
- [16] V. T. Tu, R. Cornette, J. Utge and A. Hassanin, First records of Murina lorelieae (Chiroptera: Vespertilionidae) from Vietnam. Mammalia 79(2) (2015) 201.
- [17] V. T.Tu, G. Csorba, T. Gorfol, S Arai, N. T. Son, H. T. Thanh, and AlexandreHasanin, Description of a new species of the genus Aselliscus (Chiroptera, Hipposideridae) from Vietnam. Actachiropterologica, 17(2) (2015) 233.
- [18] P. D. N. Hebert, A. Cywinska, S. L. Ball, J. R. deWaard, Biological identifications through DNA barcodes, Proc. R. Soc. Lond. B 270 (2003), 313.

- [19] J. Sambrook J., D. R. Russell, Molecular Cloning: A laboratory manual, 3rd ed, Cold Spring Harbor Laboratory Press, New York, 2001.
- [20] N. V. Ivanova, J. R. deWaard, P. D/ N. Hebert, An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6 (2006) 998.
- [21] http://blast.ncbi.nlm.nih.gov/Blast.cgi.
- [22] K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30 (2013) 2725..
- [23] A. Guillén-Servent, C. M. Francis, and R. E. Ricklefs, Phylogeny and biogeography of the horseshoe bats (Chiroptera: Rhinolophidae).
 Pp. xii-xiv in Horseshoe bats of the world (G.Csorba, P. Ujhelyi, and N. Thomas, eds.).
 Alana Books, Bishop's Castle, United Kingdom, 2003.
- [24] H. T. Thanh, N. T. Son N. V. Khoi, V. D. Thong, Bat species composition in Ba Hon area, Hon Dat district, Kien Giang province. Proceeding of the 6th National Scientific Conference on Ecology and Biological Resources, Hanoi: (2015) 865 (in Vietnamese).

Đánh giá mối quan - hệ di truyền của một số loài dơi lá mũi (Chiroptera: Rhinolophidae) ở Việt Nam sử dụng trình tự gen Cytochrom Oxydase Subunit I (*COI*)

Trần Thị Nga¹, Trần Thị Thùy Anh¹, Đỗ Thị Thanh Huyền², Nguyễn Trường Sơn³, Vũ Đình Thống³, Nguyễn Văn Sáng¹, Hoàng Trung Thành¹

¹Khoa Sinh học, Trường Đại học Khoa học Tự nhiên, ĐHQGHN, 334 Nguyễn Trãi, Thanh Xuân, Hà Nội, Việt Nam
²Trường THPT chuyên Khoa học Tự nhiên, Trường Đại học Khoa học Tự nhiên, ĐHQGHN, 182 Lương Thế Vinh, Thanh Xuân, Hà Nội, Việt Nam
³Viện Sinh thái và Tài nguyên sinh vật, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, 18 Hoàng Quốc Việt, Cầu Giấy, Hà Nội, Việt Nam

Tóm tắt: Phương pháp DNA barcoding đã được sử dụng để đánh giá mối quan hệ di truyền giữa một số loài dơi lá mũi ở Việt Nam thuộc giống *Rhinolophus*, với việc sử dụng gene cytochrome oxidase-I (*COI*). Nghiên cứu này đã xây dựng được cây quan hệ di truyền và phân tích mối quan hệ di truyền giữa các mẫu thu được trong nghiên cứu với nhau và so với một số trình tự được công bố trên Genbank. Cây quan hệ di truyền tách thành hai nhánh rõ ràng. Khoảng cách di truyền giữa các loài thay đổi từ 2.7% đến 16.3%. Những khoảng cách di truyền nhỏ nhất được ghi nhận giữa các loài trong cùng một nhóm loài trong khi những khoảng cách lớn nhất xuất hiện giữa các loài không cùng nhóm loài với nhau. Dẫn liệu về di truyền cũng phù hợp với kết quả nghiên cứu về hình thái đã được công bố trước đó.

Từ khóa: Mối quan hệ di truyền, gen COI, Rhinolophus, Vietnam.