
VNU. JOURNAL OF SCIENCE, Mathematics - Physics, T.xx, N01 - 2004

STUDY OF SELF-DIFFUSION IN SEMICONDUCTORS BY 
STATISTICAL MOMENT METHOD

Vu Van Hung, N guyen Quang Hoc and Phan Thi Thanh Hong

Hanoi Un iversity o f Education

Abstracts. Using the statistical moment method, self-diffusion in 
semiconductors is studied including the anharmonic effects of lattice vibrations.
The interaction energies between atoms in semiconductors are estimated by 
applying many-body potential. The activation energy Q and pre-exponential 
factor D{) of the self-diffusion coefficient are given in closed forms. The values of 
Q and D0 are calculated for Si and GaAs at high temperature region near the 
melting temperatures and they shown to be in good agreement with the 
experimental data

1. In trod u ction

The physical properties of crystalline solids, like electrical conductivity, 
atomic diffusivity and mechanical strength  are generally influenced quite 
significantly by the presence of lattice defects [1]. The point defects like the 
vacancies and in terstitia ls , play an important role in determining the atomic 
diffusions in crystals [2]. It is known tha t  the self-diffusion in close-packed crystals 
is almost completely conducted by the thermal lattice vacancies. On the other hand, 
the mechanical properties of the materials, e.g., creep, aging, recrystallization, 
precipitation hardening  and irradiation effects (void swelling), are also extensively 
controlled by atomic diffusions [ 1J. Therefore, it is of great significance to establish 
a theoretical scheme for trea ting  atomic diffusion in crystalline solids.

The theory of atomic diffusion in solids has a long history. In 1905, Einstein 
used incidental chaotic model for investigating the diffusion [3]. Bardeen và Hering 
impoved this model so as to include the correlation effect [4]. Using the transition 
state  theory [5], Glestom et al. have derived the diffusion coefficient and showed 
th a t  the self-diffusion obeys the A rrhenius’s law. Kikuchi discussed the atomic 
diffusion in metals and alloys by applying the path probability method [6]. In 
general the atomic diffusion have been studied within the framework of the 
phenomenological theories and based on the simple theory of the therm al lattice 
vibrations. In the present study, we establish a theoretical scheme to trea t  the self­
diffusion in semiconductors taking into account the anharm onicity of lattice 
vibrations. We use the moment method in statistical dynamics in order to calculate 
the pre-exponential factor D0 and the activation energy Q for self-diffusion in 
semicoductor with diamond cubic and zincblende ZnS structures. We compare the 
calculated resu lts  of self-diffusion in semiconductors with the experimental data.
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2. T heory o f  se lf-d iffu sion  in se m ec o n d u c to rs

In the case of the self-diffusion conducted by a vacancy mechanism, it has 
been generally assum ed th a t  the diffusion coefficient D is simply given as

D = av exp [- Q/ RT)], Q = gvf + gvm, (1)

where a and V are the jump distance and a ttem pt frequency of the atom, 
respectively. The activation energy Q of the self-diffusion is the sum of the changes 
in the free energy for the formation gvf and migration gvm of the vacancy.

In this paper, we investigate the self-diffusion in semiconductors by using the 
moment method in sta tistical dynamics. We consider the self-diffusion via vacancy 
mechanism and do not take into account the contribution from di-vacancies and 
direct atomic exchange mechanisms. We take into account the global lattice 
expansion originated from the anharmonicity of therm al lasttice vibrations, but do 
not consider the  d e ta iled  local la ttice  re lax a tio n  around  the  vacancies. In o rder to 
study the atomic diffusion in semiconductors, one m ust firstly determine the 
equilibrium lattice spacing and the free energy of the perfect crystal because the 
atomic diffusion occur at finite tem peratures. The calculational procedure for 
obtaining thermodynamic quantities of the perfect crystals has been given in our 
previous studies [7,8]. We then derive the thermodynamic quantities of the crystal 
containing therm al lattice vacancies, which play a central role in the self-diffusion 
of semiconductors.

Let us consider a monoatomic crystal consisting of N atoms and n lattice 
vacancies. By assum ing N »  n the Gibbs free energy of the crystal is given as

G(T, p) = Go(T,p) + n gvf(T,p) - TSC , (2 )

where T and p denote the absolute tem pera ture  and hydrostatic pressure, 
respectively. G0(T,p) is the Gibbs free energy of pefect crystal of N atoms, gvf(T,p) is 
the change in the Gibbs free energy due to the formation of a single vacancy and s c 
is the entropy of mixing

c _ 1 1 (N + n)!Sc = k Bln ~T, '
N!n!

where kB denotes the Boltzmann constant. It is noted here th a t  gvf(T,p) contains 
contribution from vibrational entropy of the system.

The equilibrium cocentration of a vacancy nv in semiconductors can be 
calculate from the Gibbs free energy of the system. To obtain the equilibrium 
concentration nv, we use the minimization condition of the free energy with respect 
to nv under the condition of constant p, T and N as

(ỠG/ <9nv)p T N = 0 . (4)



Study of self-diffusion in semiconductor by. 25

This minimization condition leads to the concentration of the vacancy as

g fv(T,p)!nv = exp
e

(5)

with 0 = kBT. Then, the Gibbs free energy of the crystal containing equilibrium 
therm al vacancies can be given by

g j  = - (n, + n2) V|I0" + 11,1)/!* + n 2i|/2* + Aụ0\  (6)

where

V|V = 3{U0/ 6 + 0[x + In (1 - e ■2x)]}, (7a)

u 0 = I  (Poi ( lr, I), (7b)

r, = r 0 + A r,. (7c)

Here, X = ỈKÙỈ 20, CO denotes the  atom ic v ib ra tio n a l frequency, n, and  n 2 denote 
numbers of the first and second nearest-neighbours, respectively. i|/0* = \ụ0l N 
denotes the Helmholtz free energy per single atom in the perfect crystal[6 ],vị/j and 
vị/2* represent the free energy of the atoms located at the nearest-neighbour and next 
n earest-n e ig h b o u r s ites  of th e  vacancy, respectively , cpoi is th e  in te rac tio n  energy 
between zeroth and i-th atoms, r, indicates the position of the i-th atom located at 
the neighbouring sites of the central 0 -th atom or the neares t  distance of the i-th 
atom a t  tem perature  T, r 0 determines the nearest distance of the i-th atom at 
tem pera ture  OK, Ar, indicates the displacement of the i-th atom from the 
equilibrium position at tem pera ture  T or the therm al expansion depending on 
tem pera ture  of lattice and it is determined as in [9]. It m ust be noted th a t  we take 
into account the anharm onicity of the therm al lattice vibration and therefore the 
tem pera ture  dependent therm al lattice expansion and vibrational force constants 
are considered.

To calculate the interaction energy U() of the perfect crystal, we use the 
empirical pair potentials and take into account the contributions up to the second 
nearest-neighbours. AVỊ/0‘ denotes the change in the Helmholtz free energy of the 
central atom which creates a vacancy by moving itself to the certain sinks ( e.g., 
crystal surface, or to the core region of the dislocation and grain boundary) in the 
crystal

= v|/0*’ - Vị/q* = (B - 1) ụ 0* , (8)

where v|/0*' denotes the free energy of the central atom after moving to a certain sink 
sites in the crystal. In this respect, it is noted th a t  the vacancy formation energies
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of the real crystals are m easured experimentally as an average value over all those 
values corresponding to the possible sink sites.

In the theoretical analysis, it has been often assumed th a t  the central atom 
originally located at the "vacancy site" moves to the special atomic sites, i.e., k ink 
sites on the surface or in the core region of the edge dislocation in the bulk crystal 
which are thermodynamically eqivalent to bulk atoms [10]. This assum ption simply 
leads to B = 1 in the above eq. (8). In the present study, we take the average value 
for B as

c  1 t - ( l  + n, + n 2)vồ + n i\y] + n 2v|/2

~ 2  - 2v|/J

This is equivalent to the condition tha t  the half of the broken bonds are 
recovered at the sink sites. We do not take into account the lattice relaxation 
around a vacancy, because the change in the free energy due to the lattice 
relaxation is a minor contribution compared to the formation energy of a vacancy, 
especially for high tem pera ture  region near the melting tem pera ture .

We now derive the thermodynamic quantities of the semiconductor lattice 
containing therm al vacancies and discuss the self-diffusion via vacancy mechanism. 
From (2), the Gibbs free energy of the semiconductor lattice containing therm al 
vacancies can be written in the form

G = H- TS ,  (10)

where s  = - (ỠG/ 5T)p is the entropy and H represents the enthalpy of the system. 
Thus, the change in the Gibbs free energy gvf due to the creation of a vacancy can be 
written as

g j  (T,p) = G(T,P) - Go(T,p) = hvf(T,p) - TSvf(T,p), (11)

where hvf and Svfare the enthalpy and entropy of formation of a vacancy.

The diffusion coefficient D of the semiconductor lattice can be obtained by 
assuming th a t  it is proportional to the vacancy concentration nv and the jump 
frequency r  [2], When the amplitude of the atomic vibration exceeds certain critical 
value in the nearest neighbour sites of the vacancy, one can expect th a t  atomic 
exchange process with a vacancy occurs. The num ber of jumps r  per unit time is 
proportional to the  v ib ra tio n a l frequency of the  atom  CO and th e  square  of the 
diffusion length a ( or distance of jumping)

r* ~ r^co/ (27i) = (r0 + Ar,)2co/ (2n). (12)

The general expression of diffusion coefficient D can then  be written in the
form
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D = g r  nv a : (13)

where g IS a coefficient which depends on the crystalline structure  and the 
mechanism of self-diffusion. It is given with the correlation factor f as

g = n ,f . (14)

The attem pt frequency r of the atomic jump is proportional to r* and the 
transition probability of an atom

r  _  m I = ——exp
271

/  * \  
A ịị / Ị

0
(15)

The change in the Gibbs free energy associated with the exchange of the 
vacancy with the neighbouring atoms is equal to the inverse sign of A\\I* and

gvm = - A\\)y = - (B' - 1) 1|V. (16)

where B' is simply regarded as a numerical factor, which is analogous to the factor 
B defined for formation energy of the vacancy.

Summarizing eqs. (12)-(16), one can derive the diffusion constant D of 
semiconductors via the vacancy mechanism as

T \  r  G5 2D = n ,i — a exp
2n

, f A * A /K  -  Av|/ exp TS[
0

(17)

The above formula of the diffusion coefficient can be rew ritten  as

D = D0exp - Q
V Bk„T

. Q = h[ + h™, Dq = rijf-^ -a2 exp
Zn

s
( 1 8 )

where the correlation factor of the self-diffusion f = 0,5 [14] for semiconductors with 
diamond cubic and zincblend structures.and the activation energy Q is given by

Q = - (n1 + n2) Vo + n iVi* + n2V‘2* + (B - 1) vị/0* - ( B' - 1) y !* + pAV. (19)

It is noted here th a t  the contribution from the entropy of migration Svm is 
included in the - (B' - 1)Vị/!* term, and not seperated as Svf in eq.(18). On the other 
hand , the  en tropy  Svf for th e  form ation  of a vacancy can be given in th e  n ex t-n ea res t 
neighbour approximation as

Si. 1 , , (N + 1)!-----k Bln
n, + n 2 N! n, + n 2

ln(N + 1) (20)

With the use of eqs.(18)-(20) one can determine the activation en erg y 'Q and 
the diffusion coefficients D0 at tem perature  T and pressure p.
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In the following section we shall use the above results for finding the diffusion 
coefficient D0, the activation energy Q for Si and GaAs semiconductors and compare 
them with experimental data.

3. R esu lts  o f  n u m er ica l  ca lc u la t io n s  and d iscu ss io n s

Recently the theorists developed extensively the interaction potentials 
between atoms in the form of simple model in order to calculate directly the 
structural and thermodynamic properties for complex systems, especially for 
semiconductors [11 ,12], The pair potentials like the Lennard-Jones potential and và 
the Morse potential have been applied to study the inert gas, metal and ion crystal, 
but completely used to the strong valence systems like semiconductors. To study the 
valence systems it is necessary to use the many-body interaction potentials, e.g., 
the potentials were presented by Stillinger, Weber [11], Tersoff [12], One of the 
emperical many-body potentials for Si has the following form [13]

K J i < j<k 
\ 12

- 2
v r ij J

ijk

(2 1 )

Wljk = G
1 +  3 c o s 0 : COS0:COS91 J

(rijrjkrki/

This potential firstly is param eterized for Si. The param eters  are fitted in 
with the cohesive lenghth of dimer and trim er, the lattice pa ram eter  and the 
cohesive energy of the diamond structure. Same potentials are expanded for the 
systems of two components and three  components like GaAs, SiAs, SiGa. SiGaAs,...

Applying the many-body potentials (21), we calculate the nearest-neighbour 
interaction and the next-nearest- neighbour interaction and take the  interaction 
energy in semiconductors as

u,
12

12
vrw

-2A,
vrw

0 .07811^  1.375n2G2

ri9 + (v2r1)9
(2 2 )

where A6, A12 are the s truc tura l sums for semiconductor.

The neares t neighbour distance r^Q) at tem perature  T = OK is obtained by 
minimirizing the total energy of semiconductor or taking derivative

( ổUq/ ổr ) = 0 (23)

and is equal to
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R,(0) =
2 e A 12r 0

12

(a! + 4A 6A 1!£V ' P - A

1/3

(24)

A = 0.234G1 + 0.0898G2. (25)

Using the experimental data for Si and GaAs ( Table 1) and the formulae in 
the previous section, we obtain the values of the activation energy Q, the pre­
exponential factor D0 a t various tem oeratures for Si and GaAs. The numerical 
calculations are summirized in Tables 2 and 3. It is noted th a t  the theoretical 
results can apply to GaAs though the analysis is more complex because of non-equal 
masses of atoms in the s tructure  of ZnS type

Table 1: The param eters  of the many-body potential for Si and GaAs [13 ]

Q u an tities Si GaAs

eA( eV) 2.817

r0AA(A) 2.295

GAAA(eV.Â9) 3484

eAB(eV) 1.738

roAB (Ả) 2.448

GAAB(eV. Ả 9) 1900

GABB(eV. Ả 9) 4600

Table 2: The activation energy Q and the pre-exponential factor D() for Si

T(K) 200 400 600 800 1000 1200 1400

Q(kcal/mol) 85.95 87.56 89.21 90.88 92.565 94.25 95.96

D0(10 ’nr/s) 6.18 6.55 6.95 7.24 7.44 7.58 7.72

a(Ả) 5.1745 5.1840 5.1922 5.2001 5.2078 5.2162 5.2262

Table 3: The activation energy Q and the pre-exponential factor D0 for GaAs

T(K) 200 400 600 800 1000 1200

Q(kcal/mol) 57.26 58.81 60.44 62.45 65.47 69.70

Do(l0'1m"/s) 3.83 4.09 4.64 - - -

a(Ả) 5.5861 5.6002 5.6261 5.6767 5.7748 5.9389

For Si, from experim ental data  Q = 110 kcal/mol, D0 = 1.8. 10'4m2/s [15], Q = 
107.05 kcal/mol in the interval from 1128K to 1448K and Q = 109.82 kcal/mol in
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the interval from 1473K to 1673K[16]. Therefore, the calculation resu lts  coincide 
relatively well with the experiment data.

For GaAs, from experimental data  Q = 59.86 kcal/mol in the  interval from 
1298K to 1373K and Q = 128.92 kcal/mol in the interval from 1398K to 1503KỊ16]. 
The numerical results  also agree relatively well with experim ents. Both the 
activation energy and the diffusion coefficient for Si and GaAs increases when the 
tem perature  increases and this coincides with experiments.

This paper is finished by the financial sponsorship from the National Basic 
Research Programme in N atura l Sciences..
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