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1. INTRODUCTION

Let L be an arbitrary lattice then Sub(L) - a set of all sublattices of L, forms . completé
lattice. We say that Sub(L) determines L up to isomorphism if: Sub(L) & Sub(L') =L & L’ for
some lattice L', In (1] G. Gritzer has proposed the problem: “Find conditions under wheh Sub{L}
determines L up to isomorphism”.

Concerning the problem, in [2] N. D. Filippov has given:

Theorem (X). Let L, L' be two arbitrary lattices, then Sub(L) = Sub(L') iff there exits a square
preserving bijection p : L — L',

H. M. Chuong in [ 3} also has proved:

Theorem (I1). Let M be a modular lattice of locally finite length which has no linear lecompasi-
tions. Then Sub(M) determines M up to isomorphism. or dual isomorphism.

Starting from Theorem (I) we will study the equivalence p(¢) on L determined b a square
preserving bijection: @ : L — L' and propose the concept of contractible sublattice. Using this
concept we will generalize Theorem (I1) to a larger class of lattices. The main result is

Theorem. If the lattice L has no ble subl then Sub(L) determines L up'o isomor:
phism or dual tsomorphism.

Finally, in Section 4 we will give an application of this theorem to the above nentioned
problem.

2. CONCEPT OF CONTRACTIBLE SUBLATTICE

Consider a square preserving bijection: ¢ : L — L' where L, ' are arbitrary latices. The
bijection ¢ induces a relation py on L as follows:

apob if either a > b, p(a) < p(b) or a < b, p(a) > p(b).
From p, we have the equivalence p:

apb ifeither a = bor 3zy = a, Zy,..., Zu_1, In = b: T, po 14y, 1 € {0,.., n— }.

D i 2.1. The equival on L generated by p is called “o determined” and enoted by
rlp) or p.

Consider some examples:

In Fig. 1 we observe that z;, p z; is determined by 1), z,, z,, z3 or only z¢, 22, 73 nd gy pys
by Yo,-, ys or only Yo, ¥, Ys-
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I zopzn is determined by Zo,..., Tn and 3,7 : 0 < 1 < j < n such that z; = z; then
) T4, sy Tiy Tjg1, - Tn also determine zo pz,,. Thus we have:

sfinitiom 2.2. Let apb, the sequence u = (z,, ..., z,) where z; = a, z,, = b is called a sequence
terminimg a pb with the length d(u) = n if:

(1) z =25, i#3, 5, 7€{0,1,...,n}

(2) % pZi1s i €{0, 1,y n—1}

(3) i > Tig1 & Zig1 < Tivz, Ti < Tigy © Tig1 > Tiga, 1€{0,1,..,n—2}

Moreover, if u is also a chain then we say that u is a chain determining a pb.

For the sequences we have some lemmas, their proofs can be found in [4].

'mma 2.8. If apb is determined by the sequence u = (a, z1, 23, b) then either u is a chain or
sre ezists v established from u such that v determines apb with d(v) < 2.
'mma 2.4. Letapb and a # b then there is a sequence u determining a p b 1s one of the following
o ways:

1) u s @ sequence with d(u) = 2.

2) u is a chain.

Now, we use the lemmas to prove the following theorem,

In what follows for short, it will be denoted by aSb or a || b when a is comparable or
comparablle with b respectively.

1eorem 3.5, Lot o : L — L' be a square preserving bijection and A with |A| > 1 be an
usvalence class of p(p). Then:

(a) A is o conves sublattice.

(5) If (a,b; c,d) is.a square on L thenc€ A d€ A.
oof.

1) Let a, b € A. We'can assume that a || b. According to Lemma 2.4 there exists z € 4 such

at (a, z, b) detiermines a pb. Without:loss of generality we suppose that z < a, b, which implies
< aAb, ie. aAtb, avb are equivalent to z. Thus A forms a sublattice.

To prove the convexity of A we take a, b € A and z € L such that a < z < b. We have to
ve z € A.

If p(z) < p(a) or p(2) > ©(0) then obviously z € A. Let us assume that p(a) < p(2) < w(b).
we @, b € A and aS§b there exists a chain u = (g, 7y,..., Zn—1, b) determining apb (Lemma
1). We argue by induction on d(u) in order to prove the implication a < z < b, p(a) < fz) <
b)=>z€ A

a) d= 2, trivial.

b) Comsiider u = (a, z),..

n—1, b) with n > 2. If zpy z; then z € A, otherwise we"¢oniifiire

65



a with zy, it is easy to deduce that z; < s < b and p(z1) < ¢(s) < p(b). Sinceths@
(%1, @n=1, b) determines z; pb and has the length equal to n — 1 we have the desiredco
that s € A,

2) Let (a,b; c,d) be a square in L with ¢ < d, we prove that c € A = d € A (synm ‘g
we have d € A = ¢ € A). Let us assume that p(c) < (d). As c € A there exists z € £ ﬁ
¢ po 2, From properties of the squares we have d po z i.e. d € A, which was to be provec

Now we consider the lattice L without attention to the square preserving bijection. Supposé
that L has a proper sublattice A with || > 1, which satisfies the condition (a), (b) f 15, We
define on L a congruence p(A) such that A is one class and all the others consist ¢ caly one
<lement. Thus the natural homomorphism f : L — L/p(A) identifies A with one elenem: of the
quotient lattice L/p(A) and preserves all the squares which do not belong to A (Fig. 2). Therefore

we have the following concept:
qf”) @

L/e(a)

Fig. 2

Definition 2.6. Let L be an arbitrary lattice. The proper sublattice A with |A| > lis called 2
contractible sublattice if:

(a) A is convex.

(b) If (a,b; c,d) is a square on L then c€ A 4> d € A.

Note: 1) If L has at least one contractible sublattice then we can always establish a quare pre-
serving bijection ¢ from L into another L' which is neither an isomorphism nor a dual xs-morphkm
(Fig.2).

2) The lattice K in Fig. 3 has no contractible sublattices and the square preservingbijections
from K can only be an isomorphism or a dual isomorphism. This suggests us an idea b the main
theorem in Section 3.

d ¥(d) Y(e)
- y(a), w(a)
b 9 () $b)
¥(c) w(d)
K PR Y(r)
Fig.s
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3. MAIN THEOREM

Let © : L — L' be a square preserving bijection. We introduce the concept of an invariable
serval with: respect to ¢ which we shall need in the sequel.

efinition 8.1. Let u,v € L, u < v. If p(u) < p(v) (or p(u) > p(v)) and z € [u, v] & o(z) €
(u), ©(v)] (or #(z) € [p(v), p(u)]) then [u, v] is called an invariable interval of che type (I) (or
[)) with respect to .

xample 8.2. Let (a,b; c,d) be a square with ¢ < d, then [c, d] is an invariable interval of the
pe (I) of (11).
roof. Supprose p(c) < p(d) we prove that [c, d] is invariable of the type (I).

1) If ¢ < £ < d then z is uncomparable with at least one of the two elements a, b. We can
msider z || a, which follows ©(z) || @(a). Thus, it is necessarily p(c) < p(z) < p(d).

2) Analiogously, if p(c) < p(z) < p(d) then we can consider p(z) || p(a), therefore z || a and
<z<d

If p(c) > (d) we can also prove that [c, d] is invariable of the type (II).

emma 3.8. If [u;, vi] i = 1, 2, are invariable intervals of the type (I) containing the subset
# @ then |[u; Auz, vy V vy| is also an invariable interval of the type (I) containing A.

roof. We can always assume that u) || uz, vy || v; and thus, we have the squares (uy, uz; u; A
5 w1 V), {1, U2 01 Avg, vy Vvg) (Fig.4).

0y

Fig. 4

For a € A, it implies u; < u, Vuy <a< vy Avy <oy ie. 4y Vg, vy Avg € [uy, vy]. Using
re invariability of [u1, vi] we can deduce p(u; V uz) > p(u;) and p(v;) > p(v; A vz). From the
bove two s juares we have p(u1) > p(u; A uz) and p(v; V v2) > p(v;) respectively. That means,
e obtain @(vy V v2) > p(v1) > p(u1) > p(u) A ug) (Fig.4).

Conseqquently, we have [u; A uz, v; V va] with p(u; A uz) < p(v1 V v3).

Denote: K = [p(u1 A uz), p(v) V vz)], we have to prove z € [uy A ug, v1 V up] ¢ p(z) € K.

(i) We prove the implication z € [u; A u, v) V5] = p(z) € K.

In the case that z is uncomparable with at least one of the two elements u;, u; we have
nmediately p(z) > p(u) A uz). Comparing z with vy, v, we also have p(z) < p(vy V v2).

In the «case where 2.5 u;zSu, simultaneously, there is z > uy, ug and p(z) > p(u;), p(uz)
e. p(z) > p(w; A uy). Further, considering the relation between z and v;, v, we also obtain
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o(z) < plvr Vvg).

(ii) Now, we prove: p(z) € K = 2 € [u) A ug, v; V va].

By contradiction we suppose that z ¢ [u; Aug, v1 V vg), then z < uj A ug or z > vV /Bill
this implies p(z) ¢ K, which is impossible.

The proof is completed.
Lemma 8.4. If [u;, v, 1 = 1,2, are invariable intervals of the type (II) containin/the subset
A #0 then [uy A ug, vy V v3] is also an invariable interval of the type (II) containing i.

The proof is like that of Lemma 3.3.

Now, we consider the lattice L which has no contractible sublattices. Before provig the fiigin
result, let us present the following Lemma where 3.3 and 3.4 will be used.

Lemma 8.5. Let L be a lattice having no contractible sublattices. If the square preservsg bifection
@ : L — L' is not isomorphic then a < b ¢ p(a) > p(b), Va, b€ L.

Proof. Arguing by contradiction we assume 3a;, ag € L such that a; < a3, p(a;) < (a). Putting
A = {a1, a2}, A1 = {a1}, Az = {az}, first we have to prove the following three assertons:

Assertion (Al): If there exists on L an invariable interval of the type (I) containingany of the
three subsets A, A;, A, then L has a contractible sublattice.
Proof of(A1). a) Let [u, v] be an invariable interval of the type (I) containing A. Acording to
Theorem 2.5 and since L has no contractible sublattices and ¢ is not isomorphic, L aust be an
equivalence class and thus u pv. Therefore 3z,, 22, ..., zn € L such that u pq z;, ) po 22+, Zn po¥
(Lemma 2.4). Due to the symmetry we can assume u < z; (p(u) > p(21)). It is easyto deduce
v < z; and hence we have u < v < z1, p(z;1) < p(u) < p(v).

Consequently, we have [u, v] as an invariable interval containing A with v < z;. Jenote M)
as a set of all intervals similar to [u, v]. Put M = UM), then AC M and z; ¢ M.

Take 7, y € M then z € [uy, v1], ¥ € [uz, va (3|wi, vi] € My, i =1, 2). Using Lerma 3.3 we
have [u; Aug, vy Vvo] € My and zAy, 2Vy €M Mie M is a sublattice of L.

It is easy to prove that M is contractible.

b) For the remain cases it will be enough to examine only the case where ther exists an
invariable interval [u, v of the type (I) which contains A; and does not contain Az. Hre we take
M, as family of all invariable intervals like [u, v] and M = UM,. We can also prove the ontraction
of M.

Thus (A1) is proved.
Assertion (A2): If there exist on L an invariable interval of the type (II) containing A;and which
does not contain Aj, 1, 5 =1, 2, i # 7, then L has a contractible sublattice.
Proof of (A2). By similar arguments as in (A1) part b) and using Lemma 3.4 we ome to the
desired conclusion.
Assertion (A3): If there exist on L neither invariable intervals as in (A1) nor in (A2) hen either
[a1, a2] or (ay, a2) (open interval) is a contratible sublattice.
Proof of (A8). Denote X = [a,, as], Y = (a, az).

(i) If X = L we examine Y. As L has no contractible sublattices, it is clear th |¥| > 1
Evidently Y is a convex sublattice. Now we verify condition (b) (Definition 2.6). Let(a,b; ¢,d)

68



a square on L with ¢ < d. Due to the symmetry we only have to show c € Y = d € V.
7 contradiction we assume d ¢ Y. It is necessarily d = a,, but [c, d] is an invariable interval
xample 3.2) and a; & [c, d]. This contradicts the assumptions.

(ii) If X # L we show that X is contractible. We have only verify condition (b). Consider
e square (a,b; ¢,d) on L where ¢ < d. We only have to prove the implication c € X = d € X.
ssume that d & X. Comparing d with a; we have:

If d || @z then a; belongs to [d A az, d V ag] which is an invariable interval (Example 3.2).
iwrthermore, if it is of the type (II) then it dose not contain A;. This contradicts the assumptions.

If d$ a; then d > az and thus a; € [c, d]. But [c, d] is invariable, that is impossible. Thus, it
necessarily d € X and (A3) is proved.

Now we return to the proof of Lemma 3.5. The assertions (A1), (A2), (A3) show that L
iways has a contractible sublattice. This is our desired contradiction.

We are now in a position to formulate the main theorem.
‘heorem 3.8. If the lattice L has no contractible sublattices then Sub(L) determines L up to
omorphism or dual isomorphism. .
'roof. Let f : Sub(L) — Sub(L') be a lattice isomorphism for some L'. We have to prove either
= [ or L = L' (dually isomorphic).

According to Theorem (I), f induces a square preserving bijection ¢ : L — L'. Using Theorem
.5 and the fact that L has no contractible sublattices we have only the following cases:

1) If all equivalence classes of p(i) consist of only one element then ¢ is an isomorphism.

2) If L is the only equivalence class of p(y) then p is not isomorphic, in this case ¢ must be
dual isomorphism due to Lemma 3.5.

The proof is completed.
4. APPLICATION

Fitst, we notice that for a contractible sublattice A of L, it is easy to deduce the followmg
roperty:

(P)Let k€ L\ Aanda€ A. If k<athenk <z,Vz€A.

Now wre comsider the lattice Y of all topologies of a given set X 5 @ (see [5]), where the zero-
lement is the topology O = {#, X} and the atoms’are all the topologies of the form {8, 4, X}
vith @ # A # X. Indicating {t; : ¢ € I} as a set ofatnmswehave VEEY, t#0,t=V(t;, j€J)
or some suhset § % J C I.

Statement 4.X. The lattice 3 has no contractible sublattices.

Proof. We argue by contradiction. Assume that 3 has a contractible sublattice K. As |K| > 1 we
an take t, t' € K such'that t < t'. Thus t' > 0 and ¢ = V(t;, j € J) for some non-empty subset
J ¢ I. Accordimg to (P) t; <'t, j € J. This implies that ¢’ = t which is impossible.

In short 3~ has rio contractible sublattices, which was to be proved.
Note: In another paper we will also show the other lattices which have no contractible sublattices.
They are the modular and semi - modular lattices having no linear decompositions, the freedattices
tc. This means that the class of lattices satisfying the conditions of Theorem 3.6 is largeendugh,
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and it contains the class of lattices mentioned in Theorem (II).

Now there is a natural question that what can be done with the lattices that have cotfactibls
sublattices.

First we consider the ible sublattices A, B in the les in Fig.5.

L L, L
Fig.5

In Fig.5 it is observed that L, is linearly decompossable, A, B are the maximal cotractible
sublattices and ANB # @. And L;, L; have no linear decompositions where A, B are alsonaximal
contractible sublattices, but AN B = 0.

In general, we have the assertion:

(M) If L has no linear decompositions, and A, B are the different maximal cotractible
sublattices of L then AN B = 0.

Now we consider the lattice L for which every ible sublattices is embeddd into a
maximal one and let A;, i € I, be all the maximal contractible sublattices in L. Due t (M) we
can define a congruence p(f) on L as follows: every A;, i € I is one class and the othr classes
consist of only one element. Thus, the quotient lattice L/p(I) has no contractible sublatices.

For brevety, we say that the condition (G) holds for the lattice L if Sub(L) determies L up
to isomorphism. Due to Theorem 3.6 and the fact that L/p(I) has no contractible sublatices, the
following result is easily obtained:

Let L be a lattice having no linear decompositions and every contractible sublattice>f which
is embedded into a maximal one, let {A;, ¢ € I} be the family of all the maximal corractible
sublattices. If A;, i € I satisfy cbndition (G) then L is determined by Sub(L) up to isororphism
or dual isomorphism.
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AP CHI KHIOA HQC DHQGHN, KHTN, t.XI, n’4, 1995

MOT sO KET QUA CHO BAI TOAN GRATZER

Nguyén Ditc Dat
Dai hoc Khoa hoc t nhién - DHQGHN

Trong (1], G. Gritser di néu bai todn: “Tim di€u ki¢n trén din L sao cho Sub(L) xdc dinh L
i khic nhau mjt ding cdu”.

Theo huréng cda Hoang Minh Chuong [3], ching t3i nghién ciu cic dieu kién trén mét dan
sao cho L, dwge xic dinh béi Sub(L) sai khic nhau mgt ddng cZu hojc d8i ding cfu.

Két qué cda N. D. Filippov (2] d& goi ra y tudng cin phdi b{t d3u bing viéc nghién ciru cic
ng 4nh baio toan hinh thoi tir L 1én mdt dan L' ndo d6. Do viy chiing t3i di dén kh4i niém dan
n co dwge: va ching minh két qud sau: Néu dan L khéng c6 dian con co dwgc thl Sub(L) xdc
nh L sai kihsc nhau mét ding cfu hofc mét d3i ding cZu. Phin 4p dung chi ra nhitu kifu dan
udc vdo cidc dan khong cé din con co dwgc. Ngodi 16p cic dan niy ching t5i cdn xét mét 8
in ¢6 dan «on co duge.

Nhur viiy, bing kh4i nidm din con co dwoc ching t3i di dwa ra mdt 1¥i gidi thd vi cho bai
in Gritzen.
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