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Abstract. Dy3+ -doped K2GdF5 single crystals were synthesized under hydrothermal condition. 
The UV excitation spectra and lifetimes of K2GdF5:Dy3+ were measured at room temperature. The 
excitation spectra have shown charge transfer state (CTS) of Dy3+ and energy transfer from Gd3+ to 
Dy3+ ions in K2GdF5:Dy3+ crystal. The decay curve of the K2GdF5 sample doped with 5.0 mol % 
Dy3+ ions is a non – exponential curve and is well fitted to the Inokuti – Hirayama model for S = 6. 
The energy transfer parameters (Q, CDA) and the critical distance (R0) are calculated. 
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1. Introduction
*
 

There is a continual interest in the development of new luminescent materials that can be utilized 
for the solid-state dosimeters and optoelectronic devices in industrial, scientific and medical 
applications. Crystal chemical features of stoichiometric fluoride compounds crystallizing in the ALnF 
systems (A - alkali element, Ln - rare earth (RE) element), such as BaYF4, KYF4, K2YF5 and K2GdF5 
establish prerequisites for developing novel optical RE doped materials. Dysprosium is one of the 
most popular rare earth elements; its 4f

9 electron configuration usually exists in triply ionized (Dy3+). 
Spectroscopy of Dy3+ ions doped glasses has studied and used extensively in optical devices such as 
lasers, sensors, optical fibers and amplifiers [1,2,3]. Recently, there are some reports on optical 
properties of Dy3+ doped ALnF crystal. The authors have investigated the optical properties of these 
materials by using thermoluminescence [4,5], absorption, photoluminescence spectra and Judd – Ofelt 
theory [6,7,8]. 

In order completely contribute the spectroscopic picture of Dy3+ ions doped ALnF crystal, in this 
paper, we have investigated energy transfers of  Dy3+ ions doped K2GdF5 single crystal by using the 
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UV excitation spectra and decay curves. By fitting the non – exponential curve of the K2GdF5 to 
Inokuti – Hirayama model, we have determined energy transfer parameters such as rate of energy 
transfer through cross – relaxation (WET), energy transfer parameters (Q, CDA) and critical distance 
(R0).  

2. Experiment 

The K2GdF5 crystals doped with 5.0 mol % of Dy3+ ions were obtained by hydrothermal synthesis 
at the Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia [9]. The XRD patterns 
of K2GdF5:Dy3+ have shown that the fluoride K2GdF5 crystallizes in orthorhombic system, space group 
Pnma, a = 10,814 Å b = 6,623 Å c = 7.389 Å The UV excitation spectra were recorded by Fluorolog – 3 
spectrophotometer, model FL3 - 22, Horiba Jobin Yvon. All the measurements were performed at 
room temperature. 

3. Results and discussion 

3.1. Excitation spectra and the energy transfer between Gd
3+ 

and Dy
3+

ions 

The UV excitation spectra of the Dy3+ emission 
with monitoring at wavelengths 577 nm and 485 
nm of the K2GdF5:Dy3+ single crystals are shown 
in Fig.1. The peaks at ~ 310, 320, 345, 360, 385, 
425 and 450 nm are due to the 4f – 4f inner shell 
transition of Dy3+. The broadband at ~ 300 nm is 
due to charge transfer state of Dy3+. Two narrow 
lines peaking at 254 nm and 273 nm are observed 
in the UV - side, which c correspond  to the 
transitions from the ground state 8S7/2 of Gd3+ ion 
to its excited state  6DJ (J = 7/2, 9/2) and 6IJ (J = 
11/2, 13/2) respectively [10]. These lines are not 
observed in the excitation and absorption spectra 
of the Dy3+ doped samples without Gd3+ 
component [11,12]. This implies that energy 
transfer from Gd3+ to Dy3+ ions occurred in this 
crystal. Consequently, the luminescence of Dy3+ ions in K2GdF5 could be strongly excited by the 
additional light with wavelengths 254 nm and 273 nm. 

 

  

 

Fig.1. The UV excitation spectra of the K2GdF5: 
Dy3+ crystal at the emission wavelengths 577 nm 

(a) and 485 nm (b). 
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3.2. Quenching of lifetime with concentration 

Fig. 2 presents the experimental decay curves of the K2GdF5 samples doped with 0.5 and 5.0 
mol% of Dy3+ ions. The lifetimes of the 4F9/2 level in Dy3+ ions have been determined and are 1.68 ms 
and 1.14 ms for 0.5 mol% and 5.0 mol%, respectively. The lifetimes were calculated by using the Judd 
– Ofelt theory for these samples are 1.73 ms and 1.72 ms, respectively. Thus, there is a good 
agreement between experimental and calculated lifetime at low concentration. However, as the 
concentration increases, the lifetime decreases which indicates the presence of non – radiative energy 
transfer processes from excited to neighboring unexcited Dy3+ ions. These processes can be expressed 
as [13] 

ETMP

Rmes

WW ++=
ττ

11        (1) 

where τmes and τR are measured and calculated lifetimes, respectively. WMP is the multiphonon 
relaxation rate and WET is rate of energy transfer through cross – relaxation. But in the case of Dy3+, 
WMP is negligible as there is a large energy gap of ~ 7400 cm-1 between the 4F9/2 state and next lower 
level 6F1/2. Hence, quenching of lifetime with concentration can be mainly due to energy transfer 
through cross – relaxation. Therefore 

  
Rmes

ETW
ττ

11
−=        (2) 

In our case, the values of the rate of energy transfer through cross – relaxation are 17.2 s-1 and 
295.8 s-1 for the dopant concentration of 0.5 mol% and 5.0 mol%, respectively. 
 

3.3. Decay curve analysis - Inokuti – Hirayama (IH) model 

Inokuti – Hirayama developed a theory to account for energy transfer between 4f
n energy levels of 

RE3+ ions [14]. According to this model, at the concentrations of dopant ions lower 1,0 mol%), the 
interaction between the optically active RE ions is negligible, the fluorescence decay curves is nearly 
single exponential. However, when the concentration is large enough (larger 1,0 mol%), the 
interaction between these ions becomes so prominent that energy transfer takes place from an excited 
RE ion (donor) to a non – excited RE ion (acceptor), leading to a non – exponential shape of the decay 
curve [1,13,14]. This curve is given by 
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where t is the time after excitation, τ0 is the intrinsic decay time of donor in absence of acceptor. 
The value of S (= 6, 8, 10) depends on whether the dominant mechanism of interaction is dipole – 
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dipole, dipole – quadrupole or quadrupole – quadrupole, respectively. By fitting the decay curve in 
framework of IH model, the dominant mechanisms of interaction are determined. The energy transfer 
parameter (Q) is defined as 
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where Г(x) is the gamma function, its value is equal to 1.77 for dipole – dipole, 1.43 for dipole – 
quadrupole and 1.33 for quadrupole – quadrupole, respectively [1,8,10]; N0 is the concentration of 
acceptors, which is almost equal to total concentration of RE ions; R0 is the critical distance defined as 
donor – acceptor separation for which the rate of energy transfer to the acceptors is equal to the rate of 
intrinsic decay of the donor. The parameter Q is derived in the fitting process, where we used τ0 value 
obtained for 0.5 mol %. The donor – acceptor energy transfer parameter CDA is related to the R0 by the 
relation. 
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By using the IH model, the fluorescence decay of the K2GdF5 sample doped with 5.0 mol% of 
Dy3+ ions to have a best fitting with S = 6, where we used τ0 value (~ 1.68 ms) obtained for the  
K2GdF5 sample doped with 0.5 mol% of Dy3+ ions. The parameter (S) is good as agreement with other 
reports [1,8]. Energy transfer parameters Q, CDA and critical distance (R0) are calculated following (4) 
and (5): Q = 0.62; CDA = 14.8×10-44 (cm6s-1) and R0 = 6.67 (Å ). The value of S = 6 to noted that the 
dominant interaction for energy transfer through cross – relaxation is of dipole – dipole type.   

4. Conclusion 

The present study yields a detailed picture of energy transfers of Dy3+ ions in K2GdF5 crystal. The 
UV excitation spectra have shown charge transfer state at ~ 300 nm of Dy3+ ions and energy transfer 

 
Fig.2. Decay profile for 4F9/2 excited level of Dy3+ ions in 

K2GdF5 single crystal. 
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from Gd3+ to Dy3+ ions at ~ 254 nm and 273 nm. By using the IH model, the non – exponential decay 
curve of the K2GdF5 sample doped with 5.0 mol% of Dy3+ ions is the best fitted with S = 6. This value 
has shown that the dominant interaction for energy transfer through cross – relaxation is of dipole – 
dipole type. The energy transfer parameters Q, CDA and critical distance (R0) are calculated: Q = 0.62, 
CDA = 14.8×10-44 (cm6s-1) and R0 = 6.67 (Å ). 
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