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Abstract: This paper deals with an analysis on the supersonic flutter characteristics of 

Functionally Graded (FGM) plate under aerodynamic loads. Based upon the classical plate theory 

and the Ilyushin supersonic aerodynamic theory, the governing equations of FGM plates lying in 

the moving supersonic airflow are derived. The application of Galerkin method with an 

approximate two-terms Fourier expansion solution leads to a set of nonlinear auto-oscillation 

equations for determining the nonlinear flutter response and critical velocity. Numerical results are 

obtained by fourth-order Runge-Kutta method. The influences of the material properties, 

geometrical parameters and initial conditions on the supersonic flutter characteristics of FGM plate 

are investigated. The validation of present formulation is carried out. 

Keywords: Nonlinear flutter response, critical velocity, functionally graded (FGM) plate, Ilyushin 

supersonic aerodynamic theory. 

1. Introduction
∗∗∗∗ 

Functionally Graded Materials (FGMs) are composite and microscopically in homogeneous 

materials with mechanical and thermal properties varying smoothly and continuously from one surface 

to the other. Typically, these materials are made from a mixture of metal and ceramic or a combination 

of different metals by gradually varying the volume fraction of the constituents. Due to the high heat 

resistance, FGMs have many practical applications, such as reactor vessels, aircrafts, space vehicles, 

defense industries and other engineering structures. 

Suppose functionally graded (FGM) structures moving with supersonicvelocity V  in the airflow 

or lying in the moving supersonic airflow with velocity V . When the velocity reaches a critical value, 

in the structures appears the elastic and aerodynamic phenomenon, in which the amplitude increases 

_______ 
∗
Corresponding author: Tel.: 84- 915966626 

  Email: ducnd@vnu.edu.vn  



D.H. Bich et al. / VNU Journal of Science: Mathematics – Physics, Vol. 31, No. 1 (2015) 22-35 

 

23 

continuously, so called flutter. The researchs of the flutter play important role in the safetly of flight 

vehicles with high speeds. Therefore flutter phenomena are to be considered and studied by many 

researchers.  

In recent years, many investigations have been carried out on the flutter of FGM plates and 

shells.Nonlinear thermal flutter of functionally graded panels under a supersonic flow has been 

investigated by Sohn and Kim [1] using the first-order shear deformation theory. In [1], the first-order 

piston theory is adopted to represent aerodynamic pressures induced by supersonic airflows. Singha 

and Mandal [2] studied supersonic flutter characteristics of composite cylindrical panels using a 16-

noded isoparametric degenerated shell element. Flutter of flat rectangular anisotropic plate in high 

mach number supersonic flow have been analyzed by Ramkumar and Weisshaar [3]. Prakash et al. [4] 

carried out a finite element study on the large amplitude flexural vibration characteristics of FGM 

plates under aerodynamic load. Ganapathi and Touratier [5] studied supersonic flutter analysis of 

thermally stressed laminated composite flat panels using the first-order high Mach number 

approximation to linear potential flow theory. Kouchakzadeh, Rasekh and Haddadpour [6] 

investigated panel flutter analysis of general laminated composite plates. In [7], Maloy, Shingha and 

Ganapathi analyzed a parametric study on supersonic flutter behavior of laminated composite skew 

flat panels. Prakash and Ganapathi [8] examined supersonic flutter characteristics of functionally 

graded flat panels including thermal effects using the finite element procedure. In [8], the aerodynamic 

force is evaluated by considering the first order high Mach number approximation to linear potential 

flow theory. Haddadpour et al. [9] investigated supersonic flutter prediction of functionally graded 

cylindrical. Recently, Navid Valizadeh et al. [10] studied flutter of FGM plates using NURBS with 

finite element analysis. Supersonic flutter prediction of functionally graded conical shells was 

considered by Mahmoudkhani et al. [11]. Shih-Yao Kuo [12] studied flutter of rectangular composite 

plates with varible fiber pacing applying the finite element method and quasi-steady aerodynamic 

theory. 

Commonly in the considered studies the aerodynamic pressure load was used according to the 

supersonic piston theory. 

The expression of nonlinear aerodynamic load obtained from the Ilyushin supersonic aerodynamic 

theory [13] was used in the works of Stepanov [14] and Oghibalov [15] for investigating supersonic 

flutter behavior of isotropic plates lying in the moving supersonic airflow. 

The present paper deals with the formulation of a flutter problem of functionally graded plates 

lying in the moving supersonic airflow or conversely FGM plates moving with supersonic velocity in 

the airflow. This formulation is based on the classical plate theory and the Ilyushin nonlinear 

supersonic aerodynamic theory. Investigations on nonlinear flutter response of FGM plates and critical 

velocity are carried out. 

2. Governing equations 

Consider a rectangular FGM plate, which is referred to a cartesian coordinate system , ,x y z , 

where ( , )x y
 
plane on the midplane of the plate and z on thickness directions,  ( / 2 / 2)h z h− ≤ ≤ . The 

length, width, and total thickness of the plate are a , b  and h , respectively. The plate is lying in the 
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moving supersonic airflow move with velocity V  along direction x  (Fig. 1), or conversely FGM plate 

moves with supersonic velocity in the airflow. 

 

Fig. 1. Geometry of the  FGM plate. 

By applying a simple power-law distribution (P-FGM), the volume fractions of metal and ceramic, 

m
V  and 

c
V , are assumed as:                     

2
( ) ; ( ) 1 ( ),

2

N

c m c

z h
V z V z V z

h

+ 
= = − 
 

 (1) 

where the volume fraction index N  is a nonnegative number that defines the material distribution and 

can be chosen to optimize the structural response. 

The effective properties effP
 
of the FGMs are determined by the modified mixed rules as follows: 

e ( ) Pr ( ) Pr ( ).ff c c m mP z V z V z= +  (2) 

In which Pr  is asymbol forthe specific nature of the material such as elastic modulus E , 

massdensity ρ , and subscripts m and c stand for the metal and ceramic constituents, respectively. 

 From Eqs. (1) and (2), the effective properties of the FGM plate can be written as follows: 

[ ] [ ] [ ]
2

( ), ( ) , , ,
2

N

m m cm cm

z h
E z z E E

h
ρ ρ ρ

+ 
= +  

 
 (3) 

where 

, ,
cm c m cm c m

E E E ρ ρ ρ= − = −  (4) 

and the Poisson ratio ( )zν  is assumed to be constant ( )z vν = . 

2.1. Nonlinear analysis on flutter of FGM plates 

In the present study, the classical plate theory is used to obtain the motion and compatibility 

equations.  

The train-displacement relations taking into account the von Karman nonlinear terms are [16]: 

0

0

0

,

2

x x x

y y y

xy xy xy

z

ε ε χ

ε ε χ

γ γ χ

    
    

= +    
    
    

 (5) 
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with 

22

0 0 0

2 2 2

2 2

1 w 1 w
; ; ,

2 2

; ; ,

x y xy

x y xy

u v u v w w

x x y y y x x y

w w w

x y x y

ε ε γ

χ χ χ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
= + = + = + +  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂

 (6) 

where 0

x
ε  and 0

yε  are the normal strains, 0

xyγ is the shear strain at the middle surface of the plate, 

ijχ  are the curvatures, and , ,wu v  are displacement components corresponding to the coordinate 

directions ( ), ,x y z . 

From Eqs. (6) the geometrical compatibility equation can be written as: 

22 0 2 02 0 2 2 2

2 2 2 2
.

y xyx w w w

y x x y x y x y

ε γε ∂ ∂  ∂ ∂ ∂ ∂
+ − = − 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (7) 

 Hooke's law for a plate is defined as follows: 

( ) ( )2 2
; ; ,

1 1 2(1 )
x x y y y x xy xy

E E E
σ ε νε σ ε νε σ γ

ν ν ν
= + = + =

− − +
 

(8) 

The force and moment resultants of the plate can be expressed in terms of stress components 

across the plate thickness as           

 

( ) ( )
/ 2

/2

, 1, , , , .

h

i i i

h

N M z dz i x y xyσ
−

= =∫  (9) 

 Inserting Eqs. (3), (5) and (8) into Eq. (9) gives the constitutive relations as  

( ) ( )

( ) ( )

( )

0 01 2

2 2

0 01 2

2 2

01 2

,
1 1

,
1 1

,
2 1 1

x x y x y

y y x y x

xy xy xy

E E
N

E E
N

E E
N

ε νε χ νχ
ν ν

ε νε χ νχ
ν ν

γ χ
ν ν

= + + +
− −

= + + +
− −

= +
+ +

 (10a) 

( ) ( )

( ) ( )

( )

0 0 32

2 2

0 0 32

2 2

0 32

,
1 1

,
1 1

,
2 1 1

x x y x y

y y x y x

xy xy xy

EE
M

EE
M

EE
M

ε νε χ νχ
ν ν

ε νε χ νχ
ν ν

γ χ
ν ν

= + + +
− −

= + + +
− −

= +
+ +

 

(10b) 

where 
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2

1 2

3
3

3

1 1
; ,

1 2 2( 1)

1 1 1
,

12 3 2 4( 1)

cm

m cm

m

cm

E h
E E h E E h

N N N

E h
E E h

N N N

 
= + = − 

+ + + 

 
= + − + 

+ + + 

 (11) 

For using later, the reverse relations are obtained from Eq. (10a) 

( ) ( )

( )

0 0

2 2

1 1

0

2

1

1 1
; ,

2
1 .

x x y x y y x y

xy xy xy

N N E N N E
E E

N E
E

ε ν χ ε ν χ

γ ν χ

= − − = − −

 = + −   

(12) 

The equations of motion are [16]: 

2

1 2

2

1 2

2 22 2 2 2 2

12 2 2 2 2

,

,

w
2 2 ,

xyx

xy y

xy yx
x xy y

NN u

x y t

N N v

x y t

M MM w w w
N N N q

x x y y x x y y t

ρ

ρ

ρ

∂∂ ∂
+ =

∂ ∂ ∂

∂ ∂ ∂
+ =

∂ ∂ ∂

∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (13) 

where 1 / ( 1)
m cm
h h Nρ ρ ρ= + + . 

The external force in this study is an aerodynamic pressure load q  that is created by a supersonic 

airflow. It can be determined by the Ilyushin nonlinear supersonic aerodynamic theory as [13]: 

2

2

1 1

w w w w w
2 ,q B BV BV BV

t x t x x

∂ ∂ ∂ ∂ ∂ 
− = − − +  

∂ ∂ ∂ ∂ ∂ 
 (14) 

in which 

( )
1 2

1
; ,

4

pp
B B

V V

ζ ζζ ∞∞

∞ ∞

+
= =  (15) 

and ,p V∞ ∞ the pressure and the sound velocity of the quiet airflow ( not excited ), V  is the airflow 

velocity on the surface structure, ζ  is the Politrop index. 

Inserting Eq. (14) into Eq. (13) yields: 

2

1 2
,

xyx
NN u

x y t
ρ

∂∂ ∂
+ =

∂ ∂ ∂
 (16a) 

2

1 2
,

xy yN N v

x y t
ρ

∂ ∂ ∂
+ =

∂ ∂ ∂
 (16b) 
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2 22 2 2 2

2 2 2 2

22
2

1 1 12

2 2

w w w w w w
2 .

xy yx
x xy y

M MM w w w
N N N

x x y y x x y y

B BV BV BV
t t x t x x

ρ

∂ ∂∂ ∂ ∂ ∂
+ + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ 
= + − − +  

∂ ∂ ∂ ∂ ∂ ∂ 
 

(16c) 

Volmir’s assumption can be used in the dynamical analysis [17]. By taking the inertia 
2

1 2
0

u

t
ρ

∂
→

∂
 

and 
2

1 2
0

v

t
ρ

∂
→

∂
 into cosideration because ,u w v w<< << . The two equations (16a, 16b) are satisfied 

by introducing the stress function: 

2 2 2

2 2
; ; .

x xy y

f f f
N N N

y x y x

∂ ∂ ∂
= = − =

∂ ∂ ∂ ∂
 (17) 

Putting  Eqs. (6) and (12) into Eq. (10) then substituting the obtained result into Eq. (16c), using 

relations (17) we obtain 

22 2 2
2

1 1 12

2 2 2 2

2 2 2 2

w w w w w w
2 w 2

w w
0,

w f
B BV BV BV D

t t x t x x x y x y

f f

y x x y

ρ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

+ − − + + ∆∆ + 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂
− − =

∂ ∂ ∂ ∂

 (18) 

where 
( )

2

1 3 2

2

1

.
1

E E E
D

E v

−
=

−
 

Inserting Eqs. (12) and (17) into Eq. (7), we have: 

2
4 4 4 2 2 2

4 2 2 4 2 2

1

1
2 .

f f f w w w

E x x y y x y x y

   ∂ ∂ ∂ ∂ ∂ ∂
+ + = −   

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 (19) 

The two equations (18) and (19) are the basic equations for analysis of nonlinear flutter response 

of the FGM plate. 

Four edges of the plate are simply supported and freely movable. The associated boundary 

conditions are  

w 0, 0, 0, ,

w 0, 0, 0, .

xy x x

xy y y

N M N at x a

N M N at y b

= = = = =

= = = = =
 (20) 

The approximate two-terms Fourier expansion solution of the system of Eqs. (18) and (19) 

satisfying the boundary conditions (20) can be written as  

1 2

2
w W sin sin W sin sin ,

x y x y

a b a b

π π π π
= +  (21) 
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1 2,W W  - the amplitudes which are functions dependent on time. 

Substituting Eq. (21) into the compatibility Eq. (19), and solving the obtained equation, the stress 

function can be defined as: 

1 2 3 4

5 6 7

2 2 4 2
s

2 2 2 2 2
sin sin s sin sin ,

y x x x x
f F co F cos F cos F cos cos

b a a a a

y x x x x y x x
F cos cos cos F F co

b a a a a b a a

π π π π π

π π π π π π π π

= + + +

+ + +

 (22) 

in which 

( )

( )

2 2 2
2 2 2 21 1 1

1 1 2 2 1 3 22 2 2

2 2 4 2 2 42
11

4 1 2 5 1 22 8 2 6 4 4 6 2 8

2 2 2 2 4 42
11

6 1 2 72 8 2

1
W 2W ; W ; W ,

16 2 32 128

2 16 80 912
W W ; ,

9 81 720 1888 1280 256

328 365 805
W W ;

18 2 81 720

E b E a E a
F F F

a b b

E a b a a b bE a
F F WW

b b a b a b a b a

E a b a b b aE a
F F

b b a b

 
= + = = 

 

+ +
= − =

+ + + +

+ +
= − =

+( ) 1 26 4 4 6 2 8
.

1888 1280 256
WW

a b a b a+ + +

 (23) 

Replacing Eqs. (21) and (22) into the equations of motion (18) and then applying Galerkin method yields: 

2 2
1 1 1 21 0 0 1 0 1 0

2 1
2 2 2 2

2 2 3 2

1 2 1 2 1 1 211 12 13 14 15 16

4 2W W W W
W W

4 4 3 3

W W W W W 0,

a a a

h h h h

B V BV B BVV B BVV

B B B B

l l l l l l W W

ρ

τ τ τ τ

∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂ ∂

+ + + + + + =

 (24a) 

2 2
2 1 21 0 1 0 0

1 1212 2 2

3 2

2 1 2 2 1 222 23 24 25

2W W W
W W

4 3 4

W W W W W W 0,

a a

h h h

B V B BVV BV
l

B B B

l l l l

ρ

τ τ τ

∂ ∂ ∂
− + +

∂ ∂ ∂

+ + + + =

 (24b) 

in which 

( )
4

2
2

11 124

2 2 34

1 1 1
13 14 152 2 2 2 2

4

1

4 4 2

16

2 4 6 8

4

1

4 2 4

2
1 ; ,

4 3

8 224 1
; ; ,

9 45 64
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91
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a

h a h

a a a

h h h h a h

a h a a

a a a a

a h a a

D BV
l B l

B B B

B BV B BV BE
l l l

B B B B B B

E

B B B B
l

B B B B

E

B B B B

π

π

π

π

= + =

 
= = = + 

 

 
+ + 

 =
 

+ + + + 
 


+ +

+
3 44

11

4 4

2 4 6 8

,
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32 81

a

a h h

a a a a

E BE

B B B

B B B B

ππ


 

 + +
 

+ + + + 
 

                                                              (25) 
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a

a h h
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301 2
1 2 1 1

1 1

W W
W ;W ; ; / ; / ; / ; / ;

/ .

a h

V t
B b a B b h D D h E E h

h h a

h

τ

ρ ρ

= = = = = = =

=

 

(25) 

The system of motion equations (24) will be used to determine the nonlinear flutter response of 

FGM plates. 

3. Numerical results and discussion 

The problem is treated as thatof finding out solutions of Eqs. (24a) and (24b) (the dynamic 

responses) for different values of the airflow velocity and determining the value of velocity when 

appears the phenomenon such as the vibration amplitude is found to increase continuously during the 

consideration period. This value of velocity is called a critical flutter velocity and the instability of 

FGM plate happens. 

3.1. Validation of the present formulation 

To check the reliability of the approach in this paper, the parameters of the isotropic plate in [14, 

15] are used: 

6 2 3 3

02.10 / , 7.8.10 /E kg cm kg cmρ −= =  

and 4

02
1.4, 1.014 , 3.4 10 / ,

kG
p V V cm s

cm
ζ ∞ ∞= = = = ×  

( ) ( )
( ) ( )1 2

1 2

W 0 W 0
W 0 0.1,W 0 0, 0, 0.

τ τ

∂ ∂
= = = =

∂ ∂
 

(26) 
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The nonlinear flutter response of homogeneous isotropic plate is shown in Figure 2 with the 

velocity  1000 /V m s= . In this case, the plate has unstable state . Comparing with the result 

recognized in the work [15] (Fig.17 of [15]), it can see that the good agreements are observed (figure 3). 

 

 

Fig. 2.  Nonlinear flutter response for isotropic plate in 

the present approach. 

Fig. 3. Nonlinear flutter response for isotropic plate 

of Ilyushin [15]. 

3.2. Nonlinear flutter response. Critical supersonic velocity 

The fourth-order Runge–Kutta method is used to solve Eqs. (24). In order to illustrate the present 

approach, we consider a ceramic-metal FGM plate that consists of aluminum (metal) and alumina 

(ceramic) with the material characteristics [8]: 

9 2 3

9 2 3

380 10 / , 3800 / ,

70 10 / , 2702 / ,

0.3,

c c

m m

E N m kg m

E N m kg m

v

ρ

ρ

= × =

= × =

=

 

and the characteristics of supersonic airflow [15] as following: 

4

02
1.4, 1.014 , 3.4 10 / .

kG
p V V cm s

cm
ζ ∞ ∞= = = = ×  

(27) 

with initial conditions of the plate: 

( ) ( )

( ) ( )

1 2

1 2

W 0 0.01;W 0 0,

W 0 W 0
0; 0.

τ τ

= =

∂ ∂
= =

∂ ∂

 (28) 

The nonlinear dynamic responses of thegeometric parameters / 3, / 400a b a h= =
 
and volume 

fraction index 1N =  are shown in figures 4, 5 and 6. Fig. 4 and Fig. 6 show that when increasing 

velocity (800 ÷  900 m/s) the nonlinear dynamic response with amplitudes 1W / h
 
and 2W / h

 
of the 

plate is observed to change from steady-flute to unstable. When 854.83 /V m s<
 
the oscillation of 

FGM plate is damped (steady state), 854.83 /V m s=
 
the FGM plate fluctuates almost as conditioning 

(critical status). When 854.83 /V m s>
 
the oscillations of FGM plate increase continuously with time 

(unstable state), it may lead to destruction of FGM plate. 
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Thus, the flutter critical velocity of FGM plate can be taken as Critical 854.83 /V m s= . 

 
Fig. 4. Nonlinear flutter response of FGM plate 

at 800 / .V m s=  

 
Fig. 5. Nonlinear flutter response of FGM plate at 

854.83 / .V m s=  

 

Fig. 6. Nonlinear flutter response of FGM plate at 900 / .V m s=  

Fig. 7 shows the phase diagram 
( )1W / h

τ

∂

∂  

and 1W

h  

in the case of instability (Fig. 6), the nature of 

the instability phenomenon is evident in this phase diagram. It is observed that the phase diagram is 

found as a spiral schema derived from the IC (Initial Cycle) at ( )0t =
 
(Fig.7), the IC is the top 

ofspiral, then it expands with increasing amplitude (divergence phenomenon). This phase diagram of 

the plate corresponds to an unstable state. 

 

Fig. 7. Phase diagram at 900 / .V m s=  

 

Fig. 8. Effect of volume fraction index on nonlinear 

flutter response of FGM plate. 
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Effect of volume fraction index N  on nonlinear flutter response of the FGM plate is shown in Fig. 

8 and Tab. 1. As can see that increasing the volume fraction index N  leads to reduce the critical 

flutter velocity. This is clear because the elastic modulusof metal is much lower than that of creamic. 

Table 1. Effect of the volume fraction index ( )N  and geometrical parameters on critical flutter velocity. 

  / 3a b =  / 400a h =  

  / 300a h =  / 400a h =  / 500a h =  / 2a b =  / 3a b =  / 4a b =  

0N =  4000 1800 900 960 1800 2750 

0.5N =  2700 1200 700 780 1200 1800 

1N =  2060 855 650 600 855 1500 

2N =  1600 835 580 550 835 1100 

3N =  1450 820 530 500 820 1000 

5N =  1390 760 500 390 760 950 

7N =  1290 650 480 350 650 920 

N  

N = ∞  970 550 390 290 550 830 

Figures 9, 10 and table 1show effect of geometrical parameters on nonlinear flutter response of 

FGM plate and critical flutter velocity ( )criticalV .  

  

Fig. 9. Effect of /a h  ratio on nonlinear flutter response of FGM plate. 

  

 Fig. 10. Effect of /a b  ratio on nonlinear flutter response of FGM plate. 
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From the figure 9(a) finding that the ratio / 300, / 400, / 500a h a h a h= = =
 

respectively the 

velocity 2060 / , 1000 / , 650 / ,V m s V m s V m s= = = the plate in the instable state (here is the critical 

velocity). In the case of / 300a h = with 1000 /V m s=  the plate is still in the steady state, increasing 

2060 /V m s=  the plate turns into the instable state - figure 9(b). That shows the influence of ratio 

/a h  on nonlinear flutter of FGM plate. Increasing the ratio /a h  will reduce the value of the flutter 

critical velocity ( )criticalV , or make the plate more easily destroyed. 

The influence of the ratio /a b  on the nonlinear flutter  of the plate is shown in figure 10. Figure 

10(a) indicates that with the ratio / 2, / 3, / 4a b a b a b= = =  respectively the velocities 

600 / , 1000 / , 1500 / ,V m s V m s V m s= = =  the plate is in the instable state (corresponding to the 

critical velocity). In the case of / 4, 1000 /a b V m s= =  the plate isstill in the steady state, increasing 

1500 /V m s=  the plate turns into the instable state (Fig.10(b)). That shows the influence of the ratio 

/a b  on the  nonlinear flutter of the FGM plate. Consequently, increasing the ratio /a b , the value of 

the critical velocity flutter ( )criticalV  will increase. 

The influence of initial conditions on the nonlinear flutter is shown in figure 11. The results show 

that the different initial conditions lead to meet the nonlinear dynamic flutter and the different critical 

velocities.  

  

  

Fig. 11. Effect of initial conditions on nonlinear flutter response of FGM plate. 

The results in figure 11(a) and 11(b) present the effect of initial deflection 1W (0)  on nonlinear 

flutter of the plate: amplitutes are increased with increasing initial deflections. 
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Figure 11(c) is drawn with the value of the initial condition 

( ) ( )
( ) ( )1 2

1 2

0 0
0 0, 0 0, 0.04, 0

W W
W W

τ τ

∂ ∂
= = = =

∂ ∂
 the plate is in the instable state while figure 11(d) is 

drawn to the initial condition ( ) ( )
( ) ( )1 2

1 2

0 0
0 0, 0 0, 0.4, 0

W W
W W

τ τ

∂ ∂
= = = =

∂ ∂
 the plate is still in the 

steady state. The figures 11(c) and 11(d) show significantly the effects of initial velocity on nonlinear 

flutter of the plate. Therefore, the velocity is one of the important factors which can be used to activly 

control the flutter of the FGM plates 

4. Conclusions 

The paper obtained some main results as the following 

(i) The nonlinear governing equations for flutter analysis of FGM plates lying in the moving 

supersonic airflow based on the classical plate theory and the Ilyushin nonlinear aerodynamic theory 

are derived. 

(ii) Using the stress function, the Galerkin method and an approximate two-terms Fourier 

expansion solution, the nonlinear differential auto-oscillation equations are solved for analysing 

supersonic flutter characteristics of FGM plates. 

(iii) From numerical results, we can conclude that: 

- The volume fraction index N  increases, i.e. the ceramic material constituent decreases, then the 

critical velocity of the supersonic airflow decreases, the FGM plate is  more easily instable. 

- The goemetrical parameters importanly impact on the flutter of the FGM plates.  Ratio 

/a b increases, the critical velocity of flutter increases and ratio /a h  increases, the critical velocity of 

flutter decreases. 

- Initial conditions significantly effect on the nonlinear flutter response and the critical velocity of 

the FGM plate. 

Acknowledgements 

This paper was supported by Grant in Mechanics “Nonlinear analysis on stability and dynamics of 

functionally graded shells with special shapes”- code QG.14.02 of Vietnam National University, 

Hanoi. The authors are grateful for this support. 

References 

[1] L.J. Sohn, J.H. Kim, Nonlinear thermal flutter of functionally graded panels under a supersonic flow, J. 

Composite Structures, 88, 380-387, 2009. 



D.H. Bich et al. / VNU Journal of Science: Mathematics – Physics, Vol. 31, No. 1 (2015) 22-35 

 

35 

[2] M.K. Singha, Mukul Mandal, Supersonic flutter characteristics of composite cylindrical panels, J. Composite 

Structure, 82, 295-301, 2008. 

[3] R.L. Ramkumar, T.A. Weisshaar, Flutter of flat rectangular anisotropic plate in high mach number supersonic 

flow, J. of Sound and Vibration, 50(4), 587-597, 1977. 

[4] T. Prakash, M.K. Singha, M. Ganapathi, A finite element study on the large amplitude flexural vibration 

characteristics of FGM plates under aerodynamic load,International Journal of Non-Linear Mechanics, 47, 439-

447, 2012. 

[5] M. Ganapathi, M. Touratier, Supersonic flutter analysis of thermally stressed laminated composite flat panels, J. 

Composite Structures, 34, 241-248, 1996. 

[6] M.A. Kouchakzadeh, M. Rasekh, H. Haddadpour, Panel flutter analysis of general laminated composite plates, J. 

Composite Structure, 92, 2906-2915, 2010. 

[7] Maloy K. Shingha, M. Ganapathi, A parametric study on supersonic flutter behavior of laminated composite skew 

flat panels, J. Composite Structures, 69, 55-63, 2005. 

[8] T. Prakash, M. Ganapathi, Supersonic flutter characteristics of functionally graded flat panels including thermal 

effects, J. Composite Structures, 72, 10-18, 2016. 

[9] H. Haddadpour, S. Mahmoudkhani, H.M. Navazi, Supersonic flutter prediction of functionally graded cylindrical, 

J. Composite Structures, 83, 391-398, 2008. 

[10] Navid Valizadeh, Sundararajan Natarajan, Octavio A. Gonzalez-Estrada, Timon Rabczuk, Tinh Quoc Bui, 

Stephane P.A. Bordas, NURBS-based finite element analysis of functionally graded plates: Static bending, 

vibration, buckling and flutter, J. Composite Structures, 99, 309-326, 2013. 

[11] S. Mahmoudkhani, H. Haddadpour, H.M. Navazi, Supersonic flutter prediction of functionally graded conical 

shells, J. Composite Structure, 92, 377-386, 2010. 

[12] Shih-Yao Kuo, Flutter of rectangular composite plates with varible fiber pacing, J. Composite Structure, 93, 

2533-2540, 2011. 

[13] A.A. Ilyushin, The law of plane cross sections in supersonicaerodynamics, J. of Applied Mathematics and 

Mechanics, 20 (6) (1956),(in Russian) . 

[14] R.D. Stepanov. On the flutter problem of plates. Machinery and equipment. 2 (1960), (in Russian). 

[15] P.M. Oghibalov, Problems of dynamics and stability of shells. Moscow University Press (1963), 164-174, (in 

Russian).  

[16] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis. Boca Raton: CRC Press, 

(2004). 

[17] S. Volmir, Nonlinear dynamic of plates and shells, Science edition, (1972).  


