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Abstract. A new analytical procedure for discover and evaluation of isotope effects in
Debye-Waller factor (DWF) and in X-ray absorption fine structure (XAFS) of a crystal
has been developed based on the quantum statistical theory. The derived expressions for
Debye-Waller, correlated Einstein frequency, correlated Einstein temperature and XAFS
depend on the atomic mass number as a variable. The well-known FEFF code has been
modified to include the developed i N ical calculations have been carried
out for fcc crystal Ni and its isotopes. The results show several isotope effects of the crystal
especially at low temperatures

1. Introduction

Creation of an artificial isotope can be realized by changing the atomic mass or
atom mass number of the crystals. Atomic mass of a crystal and reduced mass of a mixing
isotope can be varied as an parameter in the experiment [1, 3]. But it can lead to the
variation of several parameters of the crystals like the symmetry or atomic disorders and
the others [1, 3]. For example thermal conducting of isotope Ge is increased by 10 times
compared to the natural crystal Ge [4]. It is known that XAFS becomes an powerful
technique for analysis of thermodynamic and structural information of the substances (5,
8], so that it can be sensitive to the change of the atomic mass number of a crystal or to
changing from an isotope to another.

The purpose of this work is to study the isotope effects in the DWF and the XAFS
spectra of a crystal. We derive analytical expressions for DWF, correlated Einstein fre-
quency, correlated Einstein temperature and XAFS using quantum statistical theory and
correlated Einstein model [8]. They contain the atomic number as an variable. Numerical
evaluations have been carried out for fcc crystal Ni and its isotopes. Significant changes
of correlated Einstein frequency and temperature, DWF, XAFS spectra and their Fourier
transform magnitude for different Ni isotopes have been discovered especially at low tem-
peratures

II. Formalism

XAFS, i.e., the oscillatory structure in the X-ray absorption coefficient, is produced
by the interference between the outgoing and the backscattered waves of the photoelectron
emitted from an atom of the crystal under the action of the photon with energy ir the
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range up to 40keV. For k-edge, i.e., the emitted photoelectron is s-clectron, the XAFS
function is described by
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Developing further this equation we obtain the expression for the temperature de-
pendent XAFS function
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where F(k) is the real atomic backscattering amplitude, ® is the net phase shift, k and are
the wave number and the mean free path of the photoelectron, respectively, R = (r) with r
as the instantaneous bond length between absorbing and backscattering atoms and () de-
notes a thermal average, S3 is the square of the many body overlap term, N; is the atomic
number of each shell, and the sum is over all atomic shells. The DW F' = exp(—2k?0?) is
characterized by the mean square relative displacement (MSRD) o(T')describing vibra-
tional disorder in the bond distances due to thermal vibration of the crystal lattice.

In the present approach we apply the correlated Einstein model [8] to the calculation
of the MSRD where the effective interacting Einstein potential is given by
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Here k.sz is effective spring constant, and k3 the cubic parameter giving an asym-
metry in the pair distribution function. The correlated Einstein model may be defined as
a oscillation of a pair of atoms with masses M; and M (e.g., absorber and backscattering)
in a given system. Their oscillation is influenced by their neighbors given by the last term
in the left-hand side of Eq.(3), where the sum is over absorber (i = 1) and backscatter-
ing (i = 2), and the sum is over all their nearest neighbors, excluding the absorber and
backscatter themselves. The latter contributions are described by the term V(z). We
denote y = x — a to be the deviation from the equilibrium value of x with a(T') = (r — 7o)
as the net thermal expansion of the bond length and express Eq.(3) as
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Applying the Morse pair potential
U(z) = D(e™2* - 2¢7°%) = D(-1 + o®z® — a®z® + - --), (5)

to the effective potential of the system of Eq(3) (ignoring the overall constant) we obtain
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where kess is the Boltzmann constant; wg, 8 are the Einstein frequency and tempera-
ture, respectively; the Morse potential parameter D is the dissociation energy, and 1/a
corresponds to the width of the potential; the structural parameter (9] S = 5 for fcc and
§ =11/3 for bec.

The MSRD is calculated based on the averaged quantity (y?) and according to
statistical mechanics (8, 10, 11] it is given by
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Here the thermal average is over the statistical density matrix p = exp(—8H),8 = 1/ksT

and Z = Trp is the canonical partition function; the corresponding unperturbed quantities
are po = exp(—BHo) and Zy = Trpo, where H and Hy are the perturbed and unperturbed
Hamiltonian of the system, respectively. This first order treatment ignores anharmonic
contribution as perturbation to o2 [11].

The trace in Eq.(7)is straightforwardly evaluated using harmonic oscillator state
|n) with eigenvalues E, = hwg (zero point energy is set to zero for convenience). Thus
we obtain

oT) = 5 e (), ®
Zo= Zeﬂtﬂﬁws - Zzﬂ -

To evaluate the matrix elements in Eq.(8) we express y in terms of creation and
annihilation operators @ and a*, i. e,

y=yola+a"),y0 = Vh/2pwg. (10)
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Using Egs.(5,6) we reformed Eq.(11) and obtain the expression for the MSRD

21+z

oHT) = o1 EE, 03 = S8

25Da?’

where z = e~%/T is temperature parameter and 0§ the zero-point contribution to the
MSRD.

This MSRD contains the correlated Einstein frequency and temperature which de-
pend on the atom mass of the crystal. That is why it will be changed if a crystal is changed
into its different isotopes. The MSRD Eq.(12) is included in the XAFS function Eq.(2) so
that the XAFS spectra of a crystal and of its isotopes will be different giving thermal and
structural information of these substances.
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1I1. Numerical results and discussion

Now we apply the expressions developed in previous section to numerical calcula-
tions for fec crystal Ni and its isotopes. The Morse potential parameter D = 0.4205¢V
anda = 1.4199;1” of Ni were from [12]. The values of our calculated correlated Ein-
stein frequency wg and temperature g are presented in Table 1, where the atom mass
nnmber is written in the brackets. The correlated Einstein frequency and temperature
are increased as the atom mass number of the crystal is decreased. Figure 1 shows the
temperature dependence of our calculated MSRD of Ni and its isotopes 64, 58 and 40.
They are different especially at low temperatures and contain zero-point contributions. At
high temperatures they are linearly proportional to the temperature T.

Table 1. The values of wg and 6 of Ni and its isotopes calculated by present procedure:

Ni Isotope(64) Natural(58.7) Isotope(58) Isotope(40)
we(x109¥Hz) | 25205 2.632 2.648 3.177
0e(K) 192.534 201.041 202.248 243.535
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Figure 1: Temperature dependence of MSRD of natural Ni and of its isotopes 64, 58 and 40

We have modified the well-known FEFF code [13] to include our developed DWF
conttaining the atom mass number as a parameter. It is convenient for consideration of
isotope effects of a crystal with different atomic masses. The scattering amplitudes of the
first, shell for single scattering of natural Ni and of its isotopes 64, 58 and 40 calculated
by tthe present procedure are presented in Figure 2. They are different especially at high
k-values. Figure 3 illustrates our calculated total XAFS spectrum of Ni at 25 K. This fine
struicture contains the structural and thermal information of the crystal.

Note that the main contribution to the XAFS is given by the first shell [14]. This is
why only the calculated XAFS of the first shell for single scattering has been used for the
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{iscussion. The generalization to the other shells is straightforward. Figure 4 shows our

calculated XAFS spectra of the first shell for single scattering of Ni isotopes 64, 58 and

40 at 25 K. They are different especially at high k-values. Fourier transform magnitude
o o

of XAFS spectra presented in Figures 3 and 4 on the range 347! < k < 19.6A~! are

shown in Figures 5 and 6. They are different for different isotopes of Ni and for its natural

crystal.
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Figure 2 Scattering amplitude of the first shell Figure 3. Calculated 1otalXAFS spectrum of
for simgle scattering of natural N1 and 1ts natural Niat 25 K
1sotopes 64, 58 and 40 at 25 K.

Figure 4: Calculated XAFS spectra of the Figure 5: Founer transform magmtude of
first shell for single scattering of N1 isotopes  XAFS of natural Ni (total) and of 1ts isotopes
64, 58 and 40. 64, 58 and 40 (first shell)

—

Ni, isotop, 25k
151 shel. singie scatienng

W netgA’

—

)

Fourier transform magnitude

10 15 20 25 30 15 40

R(A)

Figure 6 Founier transform magnitude of XAFS spectra of the first shell for single scattering
of Ni1sotopes 64, 58 and 40 (Fig. 4)
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In the present approach we considered only the DWF or the 2" cumulant, that
is why only the amplitude of the XAFS spectra and the hight of their Fourier transform
magnitude peaks are changed when the atom mass number of the crystal is changed. The
phase of the XAFS can also be changed if the first and the third cumulants are included
using the procedure described in [15).

IV. Conclusions

In this work a new procedure for calculation and analysis of XAFS, DWF, correlated
Einstein frequency and temperature of isotopes of a crystal has been developed based on
the quantum statistical theory and the correlated Einstein model.

Containing the atom mass number our developed expressions are convenient for
consideration of the structural and thermodynamic property information of isotopes.

Correlated Einstein frequency and temperature are increased as the atom mass
number of a crystal is decreased. DWF is linearly proportional to the temperature at high
temperatures and different for different isotopes, especially at low temperatures. It is also
followed that the isotope effects appear more clearly at low temperatures.

The well-known code FEFF has been modified by including our expressions for
numerical calculations. The results of Ni show several isotope effects.
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